சமான உறவு (கணிதம்)

testwiki இலிருந்து
imported>InternetArchiveBot பயனரால் செய்யப்பட்ட 06:08, 30 ஆகத்து 2021 அன்றிருந்தவாரான திருத்தம் (Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.8)
(வேறுபாடு) ← பழைய திருத்தம் | ஆக அண்மைய திருத்தம் (வேறுபாடு) | புதிய திருத்தம் → (வேறுபாடு)
Jump to navigation Jump to search

கணிதத்தில் பற்பல சூழ்நிலைகளில் சில பொருள்களையோ அல்லது கணிதப் படைப்புகளையோ சமானமாகக் கருத வேண்டிய அவசியம் ஏற்படுகின்றது. இது கணிதத்துக்கு மாத்திரம் ஏற்படுவதில்லை. உலகில் சாதாரண வாழ்க்கையில் பல்வேறு காரணங்களுக்காக நாம் சில விஷயங்களை, பொருள்களை, சமானமாக பாவித்து, அவைகளை ஒரே பகுதியில் சேர்க்கிறோம். மனித சமூகத்தை ஆண், பெண் என்ற இரண்டு பகுதிகளாகப்பிரித்து குறிப்பிட்ட சூழ்நிலையில் ஆண்களை ஒருவருக்கொருவர் சமானமாகவும் பெண்களை ஒருவருக்கொருவர் சமானமாகவும் கருதுகிறோம். வேறு ஒரு சூழ்நிலையில் வயதை வைத்து அதே மானிட சமூகத்தை வேறு பகுதிகளாகப் பிரிக்கிறோம். இவ்விதம் சமானப் பகுதிகளாகப் பிரிக்கும்போது ஒரே பகுதிக்குள் உள்ள பொருள்களை அல்லது நபர்களை ஒருவருக்கொருவர் சமானமாகவும் வெவ்வேறு பகுதிகளுக்குள் உள்ளவர்களை ஒருவருக்கொருவர் சமானமில்லாதவர்களாகவும் கருதுகிறோம். இவ்விதம் சமானம் என்ற கருத்து தோன்றுகின்றபொழுது அல்லது படைக்கப்படுகின்றபொழுது, சமான உறவு என்பது உருவாக்கப்படுகிறது.

கணிதத்தில் சமான உறவு

அஞ்சல் தலைகளின் கணத்தில் ஒரே வகையைச் சேர்ந்த அஞ்சல் தலைகளை ஒரு பகுதியாகக் கொண்டு அக்கணத்தைப் பகுக்கும் ஒரு சமான உறவு. இதில் எந்தவொரு அஞ்சல் தலையும் இரு கட்டுகளில் இல்லை; அதே சமயம் எந்தவொரு கட்டும் அஞ்சல் தலையின்றி இல்லை.

கணிதத்தில் சமான உறவு (equivalence relation) என்பது தரப்பட்ட ஒரு கணத்தின் உறுப்புகள் ஒவ்வொன்றும் ஒரேயொரு பகுதிக்குள் இருக்குமாறு அக்கணத்தைச் சிறுசிறு பகுதிகளாகப் பிரிக்கும் ஒரு ஈருறுப்பு உறவாகும். ஒரு கணத்திலுள்ள இரு உறுப்புகள் அக்கணத்தின் ஒரே பகுதிக்குள் இருந்தால் மட்டுமே அவ்விரு உறுப்புகளும் சமானமானவையாகக் கருதப்படும். கணத்தின் ஏதேனும் இரு பகுதிகளின் வெட்டு வெற்றுக் கணமாகவும் அனைத்து பகுதிகளின் ஒன்றிப்பு அக்கணமாகவும் இருக்கும்.

வரையறை

ஒரு கணம் A இன் மீது வரையறுக்கப்பட்ட ஈருறுப்பு உறவானது (~) எதிர்வு, சமச்சீர், கடப்பு ஆகிய மூன்று உறவுகளாகவும் இருந்தால், இருந்தால் மட்டுமே அது ஒரு சமான உறவாக இருக்கும். அதாவது,

A கணத்தின் உறுப்புகள் a, b , c அனைத்திற்கும்:

எதிர்வு (Reflexivity): ஒவ்வொரு பொருளும் தனக்கு சமானம்.அதாவது, aa
சமச்சீர் (Symmetry): இது அதற்குச் சமானமென்றால் அது இதற்குச் சமானம். அதாவது abba
கடப்பு (Transitivity): இது அதற்குச் சமானமாகவும், அது இன்னொன்றுக்குச் சமானமாகவும் இருந்தால், இது அந்த இன்னொன்றுக்குச் சமானமாக இருந்தாக வேண்டும். அதாவது, ab,bcac.

ஒரு கணத்தின் உறுப்புகளுக்குள் ஓர் உறவு படைக்கப்பட்டு அது மேற்கூறிய மூன்று பண்புகளையும் பெற்றிருந்தால் அதை சமான உறவு என்று வரையருக்கபடுகிறது முக்கிய விளைவு, அவ்வுறுப்புகளெல்லாம் சமானப் பகுதிகளாகப் பிரிக்கப்படுவதே.

குறியீடு

R எனும் சமான உறவைப் பொறுத்து, ஒரு கணத்தின் உறுப்புகள் a , b இரண்டும் சமானமானவை எனில் அதனைக் குறியீட்டில் பின்வருமாறு குறிக்கலாம்:

R, மிகவும் வெளிப்படையானதொரு உறவாக இருப்பின் குறியீடு:

ab
ab

பிற உறவுகளுக்கு குறியீடு:

aRb
aRb
aRb

எடுத்துக்காட்டுகள்

கணிதத்தில் அநேக சமான உறவுகள் படைக்கப்படுகின்றன்.

ஆக, இன்னும் பல.

சமான உறவல்லாதவை சில

  • மெய்யெண்களில் "≥" என்பது சமான உறவு இல்லை. ஏனெனில் அது எதிர்வு மற்றும் கடப்பு உறவாக இருந்தாலும் சமச்சீர் உறவாக இல்லை (7 ≥ 5 ஆனால் 5 ≥ 7 என்பது உண்மை இல்லை).
  • 1 ஐ விட அதிகமான இயல் எண்களில் 1 ஐ விடப் பெரிய பொதுக்காரணியுடைய என்பது சமான உறவு இல்லை. ஏனெனில் அது எதிர்வு மற்றும் சமச்சீர் உறவாக இருப்பினும் கடப்பு உறவு இல்லை (2, 6 இரண்டிற்கும் 1 ஐவிடப் பெரிய பொதுக்காரணி உள்ளது; 6, 3 இரண்டிற்கும் 1 ஐவிடப் பெரிய பொதுக்காரணி உள்ளது; ஆனால் 2, 3 இரண்டிற்கும் 1 ஐவிடப் பெரிய பொதுக்காரணி இல்லை).

இவற்றையும் பார்க்கவும்

மேற்கோள்கள்

வெளி இணைப்புகள்

"https://ta.wiki.beta.math.wmflabs.org/w/index.php?title=சமான_உறவு_(கணிதம்)&oldid=198" இலிருந்து மீள்விக்கப்பட்டது