தளம் (வடிவவியல்)

testwiki இலிருந்து
Jump to navigation Jump to search
முப்பரிமாண வெளியில் இரு வெட்டிக் கொள்ளும் தளங்கள்

கணிதத்தில், எந்த ஒரு தட்டையான இருபரிமாணப் பரப்பும் தளம் எனப்படுகிறது. சுழியப் பரிமாணத்தில் புள்ளி, ஒரு பரிமாணத்தில் கோடு, முப்பரிமாணத்தில் வெளி என இருப்பது போல இருபரிமாணத்தில் அமைவது தளமாகும். முப்பரிமாண அறையிலுள்ள சுவர்கள் தளங்களாக இருப்பதைப் போல, இரண்டிற்கும் அதிகமான பரிமாணங்களில் அமையும் வெளிகளின் உள்வெளிகளாகவும் தளங்களைக் கருதலாம் அல்லது யூக்ளிடிய வடிவவியலில் உள்ளது போல எதையும் சாராததொரு கருத்தாகவும் தளத்தைக் கருதலாம்.

இருபரிமாண யூக்ளிடிய வெளியில் செயல்படும்போது முழுவெளியையும் குறிப்பதற்கு தளம் என்ற சொல்தான் பயன்படுத்தப்படுகிறது. கணிதத்தில் வடிவவியல், முக்கோணவியல், சார்பு வரைபடம் ஆகிய பிரிவுகளில் பல அடிப்படைச் செயல்கள் இருபரிமாண வெளியில் அதாவது தளத்தில் செய்யப்படுகின்றன. அதிக அளவிலான கணிதச் செயல்களைத் தளத்தில் செயல்படுத்த முடியும்.

யூக்ளிடிய வடிவவியல்

யூக்ளிட், வடிவவியலை அடிக்கோள்கள் மூலம் அணுகும் முறையை முதன் முதலில் அறிமுகப்படுத்தியவர். வரையறுக்கப்படாத சொற்கள் மற்றும் அடிக்கோள்கள் சிலவற்றைத் தேர்ந்தெடுத்து, வடிவவியல் கூற்றுகளை நிரூபிக்கப் பயன்படுத்தினார். தளத்தின் தற்போதைய வரையறையைப் போல நேரிடையான வரையறை எதுவும் தளத்தினைப் பற்றிக் யூக்ளிட் கூறியிருக்காவிட்டாலும் அவர் கையாண்ட சாமானியக் கருத்துகளின் ஒரு பகுதியாகத் தளத்தினைக் கருதலாம்.[1] நீளங்கள், கோணங்கள் மற்றும் பரப்பளவுகளை அளப்பதற்கு அவர் ஒருபோதும் எண்களைக் கையாளவில்லை. இந்த வகையில் யூக்ளிடிய தளம் கார்ட்டீசியன் தளத்தைப் போல் இல்லாமல் வேறுபட்டுள்ளது.

இணையான தளங்கள்.

3 ல் அமைந்துள்ள தளங்கள்

இப்பிரிவில் முப்பரிமாணத் தளங்கள் குறிப்பாக ℝ3 ல் அமைந்துள்ள தளங்கள் பற்றிக் காணலாம்.

பண்புகள்

உயர்பரிமாணத்திற்குப் பொருந்தாத சில உண்மைக் கூற்றுகளை யூக்ளிடிய முப்பரிமாணத் தளத்திலிருந்து எடுத்துக் கொள்ளலாம்.

  • இரு தளங்கள் ஒன்றுக்கொன்று இணையானவையாக இருக்கும் அல்லது அவை ஒரு கோட்டில் வெட்டிக் கொள்ளும்.
  • ஒரு கோடு ஒரு தளத்திற்கு இணையாக அல்லது முழுவதுமாக அத்தளத்தின் மீது அமையும் அல்லது அக்கோடு தளத்தினை ஒரு புள்ளியில் வெட்டும்.
  • ஒரே தளத்திற்குச் செங்குத்தாக அமையும் இருகோடுகள் இணையானவை.
  • ஒரே கோட்டிற்கு இணையாக அமையும் இரு தளங்கள் இணையானவை.

வரையறை 1

ro என்பது தளத்தின் மீது அமைந்த தரப்பட்ட ஒரு புள்ளி P0 இன் நிலைத் திசையன், n என்பது தளத்திற்குச் பூச்சியமல்லா செங்குத்து திசையன் என்க.

தளத்தின் மீதுள்ள ஏதேனும் ஒரு புள்ளி P இன் நிலைத்திசையன் r எனில் P0 மற்றும் Pஐ இணைக்கும் திசையன் nக்குச் செங்குத்தாக அமையும்.

இரு செங்குத்து திசையன்களின் புள்ளிப் பெருக்கல் பூச்சியம் என்பதால்,

𝐧(𝐫𝐫0)=0.

இச்சமன்பாட்டை நிறைவு செய்யும் புள்ளிகளின் தொகுப்பாக தளத்தினைக் கருதலாம்.

மேலேயுள்ள சமன்பாட்டை விரிக்கக் கிடைக்கும் சமன்பாடு,

nx(xx0)+ny(yy0)+nz(zz0)=0, இது தளத்தின் கார்ட்டீசியன் சமன்பாடாகும்.

வரையறை 2

v மற்றும் w என்பவை தளத்தின் மீது அமையும் இரு திசையன்கள், ro என்பது தளத்தின் மேலமையும் ஏதேனும் ஒரு குறிப்பிட்ட (arbitrary (but fixed)) புள்ளியின் நிலைத்திசையன் எனில் அத்தளத்தினைப் பின்வரும் சமன்பாட்டை நிறைவு செய்யும் புள்ளிகளின் தொகுப்பாகக் கருதலாம்:

𝐫=𝐫0+s𝐯+t𝐰,

இங்கு s மற்றும் t என்பன, அனைத்து மெய்யெண் மதிப்புகளையும் எடுக்கக்கூடிய திசையிலிகள் (scalars). v , w திசையன்கள், தளத்தில் ஒரு புள்ளியிலிருந்து தொடங்கி இரு வெவ்வேறு திசைகளில் அமையும் திசையன்களாக இருக்கும். அவை செங்குத்தாக இருக்கலாம், ஆனால் இணையானவையாக இருக்கமுடியாது.

வரையறை 3

தளத்தின் மீதமையும் மூன்று புள்ளிகள்:

P1=(x1,y1,z1),
P2=(x1,y2,z2) ,
P3=(x3,y3,z3) எனில்,

வழி 1

P1, P2, P3 ஆகிய மூன்று புள்ளிகள் வழியே செல்லும் தளத்தை பின்வரும் அணிக்கோவைச் சமன்பாடுகளை நிறைவு செய்யும் அனைத்துப் புள்ளிகளின் தொகுப்பாகக் கருதலாம்.

|xx1yy1zz1x2x1y2y1z2z1x3x1y3y1z3z1|=|xx1yy1zz1xx2yy2zz2xx3yy3zz3|=0.

வழி - 2

ax+by+cz+d=0, என்ற சமன்பாட்டின் வடிவில் தளத்தினைப் பெற பின்வரும் சமன்பாட்டுத் தொகுதிக்குத் தீர்வு காண வேண்டும்.

  • ax1+by1+cz1+d=0
  • ax2+by2+cz2+d=0
  • ax3+by3+cz3+d=0.

இச்சமன்பாடுகளைக் கிராமரின் விதியையும் அணிகளின் அடிப்படைத்திறனையும் பயன்படுத்தித் தீர்க்கலாம்.

D=|x1y1z1x2y2z2x3y3z3|.

D ன் மதிப்பு பூச்சியமில்லையெனில் (தளங்களப் பொறுத்தவரை, ஆதிவழிச் செல்லாதவை) a, b and c ன் மதிப்புகளைப் பின்வருமாறு காணலாம்.

a=dD|1y1z11y2z21y3z3|
b=dD|x11z1x21z2x31z3|
c=dD|x1y11x2y21x3y31|.

ax+by+cz+d=0 சமன்பாட்டில் a, b மற்றும் c ன் மதிப்புகளைப் பிரதியிட்ட பின், d க்கு தரப்படும் ஒவ்வொரு ஒரு பூச்சியமில்லா மதிப்புக்கும் கிடைக்கும் தீர்வுச் சமன்பாடுகள், ஒன்றுக்கொன்று இணையான தளங்களைக் குறிக்கும்.

வழி - 3

இத்தளத்தை வரையறை 1ல் உள்ளபடி ஒரு புள்ளி, செங்குத்துத் திசையன் வடிவிலும் காணலாம். இதற்குரிய செங்குத்துத் திசையனை P1, P2 புள்ளிகளையும் மற்றும் P1, P3 புள்ளிகளையும் இணைக்கும் இரு திசையன்களின் குறுக்குப் பெருக்கத் திசையனாகவும்,

𝐧=(𝐩2𝐩1)×(𝐩3𝐩1),
ro, ஐ, தரப்பட்ட மூன்று புள்ளிகளில் ஏதேனும் ஒன்றின் நிலைத்திசையனாகவும் கொண்டு வரையறை 1 இன் வடிவில் இத்தளத்தின் சமன்பாட்டினை அமைக்கலாம்.[2]

ஒரு புள்ளிக்கும் தளத்திற்கும் இடைப்பட்ட தூரம்

𝐩1=(x1,y1,z1) என்ற புள்ளியிலிருந்து,
Π:ax+by+cz+d=0 என்ற தளத்திற்கு உள்ள மிகக் குறைந்த தூரம் காணும் வாய்ப்பாடு:
D=|ax1+by1+cz1+d|a2+b2+c2.

D=0 என இருந்தால், இருந்தால் மட்டுமே 𝐩1 புள்ளியானது தளத்தின் மேல் அமையும்.

a2+b2+c2=1 எனில் மேலே தரப்பட்டுள்ள வாய்ப்பாடு,

D= |ax1+by1+cz1+d|. ஆகும்.

இரு தளங்கள் வெட்டிக் கொள்ளும் கோடு

Π1:𝐧1𝐫=h1 ,
Π2:𝐧2𝐫=h2 (𝐧i அலகுத் திசையன்கள்)

என்ற இருதளங்களும் வெட்டிக் கொள்ளும் கோட்டின் சமன்பாடு:

𝐫=(c1𝐧1+c2𝐧2)+λ(𝐧1×𝐧2)

இங்கு,

c1=h1h2(𝐧1𝐧2)1(𝐧1𝐧2)2
c2=h2h1(𝐧1𝐧2)1(𝐧1𝐧2)2.

இரு தளங்களுக்கிடையேயான கோணம்

Π1:a1x+b1y+c1z+d1=0
Π2:a2x+b2y+c2z+d2=0,

என்ற இரு வெட்டிக்கொள்ளும் தளங்களுக்கு இடையேயான கோணமானது அத்தளங்களின் செங்குத்துகளுக்கிடையே உள்ள கோணமாக (α) வரையறுக்கப்படுகிறது.

cosα=n^1n^2=a1a2+b1b2+c1c2a12+b12+c12a22+b22+c22.

மேற்கோள்கள்

"https://ta.wiki.beta.math.wmflabs.org/w/index.php?title=தளம்_(வடிவவியல்)&oldid=435" இலிருந்து மீள்விக்கப்பட்டது