படிமம்:Cubic graph special points.svg
testwiki இலிருந்து
Jump to navigation
Jump to search
Size of this PNG preview of this SVG file: 500 × 600 படப்புள்ளிகள். மற்ற பிரிதிறன்கள்: 200 × 240 படப்புள்ளிகள் | 400 × 480 படப்புள்ளிகள் | 640 × 768 படப்புள்ளிகள் | 854 × 1,024 படப்புள்ளிகள் | 1,708 × 2,048 படப்புள்ளிகள் | 512 × 614 படப்புள்ளிகள் .
மூலக்கோப்பு (SVG கோப்பு, பெயரளவில் 512 × 614 பிக்சல்கள், கோப்பு அளவு: 17 KB)
Wikimedia Commons இலுள்ள இக்கோப்பு வேறு திட்டங்களிலும் பயன்படுத்தப்படலாம். இதனைப் கோப்பின் விவரப்பக்கம் பற்றிய விபரம் கீழே காட்டப்படுகிறது.
சுருக்கம்
| விளக்கம்Cubic graph special points.svg |
English: Graph showing the relationship between the roots, turning or stationary points and inflection point of a cubic polynomial and its first and second derivatives. The vertical scale is compressed 1:50 relative to the horizontal scale for ease of viewing. Thanks to Álvaro Lozano-Robledo for a method to find a cubic function with distinct special points with non-zero integer coordinates. |
|
| மூலம் | சொந்த முயற்சி | |
| ஆசிரியர் | Cmglee | |
| ஒத்தக்கோப்பு |
|
|
| SVG genesis InfoField |
import re, math
def fmt(string): ## string.format(**vars()) using tags {expression!format} by CMG Lee
def f(tag): i_sep = tag.rfind('!'); return (re.sub('\.0$', '', str(eval(tag[1:-1])))
if (i_sep < 0) else ('{:%s}' % tag[i_sep + 1:-1]).format(eval(tag[1:i_sep])))
return (re.sub(r'(?<!{){[^{}]+}', lambda m:f(m.group()), string)
.replace('{{', '{').replace('}}', '}'))
def append(obj, string): return obj.append(fmt(string))
def tabbify(cellss, separator='|'):
cellpadss = [list(rows) + [''] * (len(max(cellss, key=len)) - len(rows)) for rows in cellss]
fmts = ['%%%ds' % (max([len(str(cell)) for cell in cols])) for cols in zip(*cellpadss)]
return '\n'.join([separator.join(fmts) % tuple(rows) for rows in cellpadss])
def format_sign(x): return ('%+d' % (x)).replace('+', '+ ').replace('-','− ')
def scale_x(x): return 50 * x
def scale_y(y): return -y
n_search = 20
cubic_bez_dx = 15
quad_bez_dx = 15
linear_dx = 15
fmt_out = '{id}\
|{root0}|{root1}|{root2}|{max_x}|{max_y}|{min_x}|{min_y}|{inf_x}|{inf_y}|{inf_c}|{inf_m}\
|{cubic_b}|{cubic_c}|{cubic_d}|{quad_b}|{quad_c}\
'
double_dash = '-' * 2
outss = []
outs = []
for i_pass in range(2): ## 0: to find best values, 1: output SVG
id_best = None
if (i_pass == 1):
outss = sorted(outss, key=lambda outs:[max(abs(int(outs[5])), abs(int(outs[7]))),
max(abs(int(outs[1])), abs(int(outs[3])))])
id_best = int(outss[0][0])
print(tabbify([fmt_out.replace('{','').replace('}','').split('|')] + outss))
id = 0
for k2 in range(-n_search, n_search + 1):
for k1 in range(k2 + 1, n_search + 1):
for k0 in range(k1 + 1, n_search + 1):
(root0, root1, root2) = (-k0, -k1, -k2)
if (root0 == 0 or root0 == root1 or
root1 == 0 or root1 == root2 or
root2 == 0 or root2 == root0): continue
cubic_a = 1
cubic_b = k0 + k1 + k2
cubic_c = k0 * k1 + k1 * k2 + k2 * k0
cubic_d = k0 * k1 * k2
quad_a = cubic_a * 3
quad_b = cubic_b * 2
quad_c = cubic_c
linear_a = quad_a * 2
linear_b = quad_b
if (cubic_a == 0 or quad_a == 0 or linear_a == 0 or
cubic_b == 0 or quad_b == 0 or linear_b == 0 or
cubic_c == 0 or quad_c == 0 or
cubic_d == 0): continue
sqrt_disc = (4 * (k0 ** 2 + k1 ** 2 + k2 ** 2 - quad_c)) ** 0.5
if ((quad_b + sqrt_disc) % linear_a != 0 or
(quad_b - sqrt_disc) % linear_a != 0): continue
(max_x, min_x) = [(-quad_b + sign * sqrt_disc) / linear_a for sign in (-1,1)]
quad_bez_x1 = inf_x = (max_x + min_x) / 2
linear_x0 = inf_x - linear_dx
linear_x1 = inf_x + linear_dx
cubic_bez_x0 = inf_x - cubic_bez_dx
cubic_bez_x3 = inf_x + cubic_bez_dx
(inf_y, max_y, min_y, cubic_bez_y0, cubic_bez_y3) = [
cubic_a * x ** 3 + cubic_b * x ** 2 + cubic_c * x + cubic_d
for x in (inf_x, max_x, min_x, cubic_bez_x0, cubic_bez_x3)]
quad_bez_x0 = inf_x - quad_bez_dx
quad_bez_x2 = inf_x + quad_bez_dx
(inf_m, quad_bez_y0, quad_bez_y2, cubic_bez_m0, cubic_bez_m3) = [
quad_a * x ** 2 + quad_b * x + quad_c for x in
(inf_x, quad_bez_x0, quad_bez_x2, cubic_bez_x0, cubic_bez_x3)]
inf_c = inf_y - inf_m * inf_x
quad_bez_y1 = ((linear_a * quad_bez_x0 + quad_b) * (quad_bez_x1 - quad_bez_x0) + quad_bez_y0)
cubic_bez_x1 = (3 * inf_x - cubic_bez_dx) // 3 ## not sure how to get this
cubic_bez_x2 = inf_x + (inf_x - cubic_bez_x1)
cubic_bez_y1 = cubic_bez_m0 * (cubic_bez_x1 - cubic_bez_x0) + cubic_bez_y0
cubic_bez_y2 = cubic_bez_m3 * (cubic_bez_x2 - cubic_bez_x3) + cubic_bez_y3
if (id == id_best):
path_cubic = fmt('''M {scale_x(cubic_bez_x0)},{scale_y(cubic_bez_y0)} C\
{scale_x(cubic_bez_x1)},{scale_y(cubic_bez_y1)}\
{scale_x(cubic_bez_x2)},{scale_y(cubic_bez_y2)}\
{scale_x(cubic_bez_x3)},{scale_y(cubic_bez_y3)}''')
path_quad = fmt('''M {scale_x(quad_bez_x0)},{scale_y(quad_bez_y0)} Q\
{scale_x(quad_bez_x1)},{scale_y(quad_bez_y1)}\
{scale_x(quad_bez_x2)},{scale_y(quad_bez_y2)}''')
path_linear = fmt('''M {scale_x(linear_x0)},{scale_y(linear_x0 * linear_a + linear_b)} L\
{scale_x(linear_x1)},{scale_y(linear_x1 * linear_a + linear_b)}''')
path_tangent = fmt('''M {scale_x(float(min_y - inf_c) / inf_m)!.0f},{scale_y(min_y)} L\
{scale_x(float(max_y - inf_c) / inf_m)!.0f},{scale_y(max_y)}''')
append(outs,'''\
<use xlink:href="#axes"/>
<g stroke-width="4">
<g mask="url(#mask_line)">
<path class="line_cubic" d="{path_cubic}"/>
<path class="line_quad" d="{path_quad}" stroke-dasharray="20,5"/>
<path class="line_linear" d="{path_linear}" stroke-dasharray="6,4" stroke-width="6"/>
<path class="line_tangent" d="{path_tangent}" stroke-dasharray="25,5,5,5,5,5"/>
</g>
<g class="line_concav">
<path d="M {scale_x(max_x)},{scale_y(max_y)} V 0
M {scale_x(min_x)},{scale_y(min_y)} V 0
M {scale_x(inf_x)},{scale_y(inf_y)} V 500" stroke-dasharray="20,5,5,5"/>
<path d="M -630 460 Q -630 470 -620 470 H 35 Q 45 470 45 460 M 55 460 Q 55 470 65 470 H 620 Q 630 470 630 460"/>
</g>
</g>
<g stroke-width="8">
<g class="label_cubic">
<text class="equation" x="-70" y="-630"><tspan class="var">f</tspan><tspan dx="0.2ex">(</tspan><tspan class="var">x</tspan><tspan>) = </tspan><tspan class="var">x</tspan><tspan>³ {format_sign(cubic_b)}</tspan><tspan class="var">x</tspan><tspan>² {format_sign(cubic_c)}</tspan><tspan class="var">x</tspan><tspan> {format_sign(cubic_d)}</tspan></text>
<g transform="translate({scale_x(root0)}, 0)"><use xlink:href="#root"/><text x="0.5ex" y="2ex">root ({root0})</text></g>
<g transform="translate({scale_x(root1)}, 0)"><use xlink:href="#root"/><text x="0.5ex" y="2ex">root ({root1})</text></g>
<g transform="translate({scale_x(root2)}, 0)"><use xlink:href="#root"/><text x="-0.5ex" y="2ex" class="end">root ({root2})</text></g>
<g transform="translate({scale_x(max_x)},{scale_y(max_y)})"><use xlink:href="#tp" /><text x="-9ex" y="-0.8ex">turning point, stationary point & local maximum ({max_x}, {max_y})</text></g>
<g transform="translate({scale_x(min_x)},{scale_y(min_y)})"><use xlink:href="#tp" /><text x="5ex" y="2ex" class="end">turning point, stationary point & local minimum ({min_x}, {min_y})</text></g>
<g transform="translate({scale_x(inf_x)},{scale_y(inf_y)})"><use xlink:href="#ip" /><text y="-1ex">falling inflection point ({inf_x}, {inf_y})</text></g>
<!-{double_dash}
<g transform="translate(0 ,{scale_y(cubic_d)})"><use xlink:href="#yi" /><text x="0.5ex">y-intercept ({cubic_d})</text></g>
{double_dash}>
</g>
<g class="label_quad">
<text class="equation" x="-530" y="-260"><tspan class="var">f</tspan><tspan dx="0.2ex" class="var">'</tspan><tspan dx="0.2ex">(</tspan><tspan class="var">x</tspan><tspan>) = {quad_a}</tspan><tspan class="var">x</tspan><tspan>² {format_sign(quad_b)}</tspan><tspan class="var">x</tspan><tspan> {format_sign(quad_c)}</tspan></text>
<g transform="translate({scale_x(max_x)}, 0)"><use xlink:href="#root"/><text x="0.5ex" y="-0.2ex">root ({max_x})</text></g>
<g transform="translate({scale_x(min_x)}, 0)"><use xlink:href="#root"/><text x="-0.3ex" y="-0.2ex" class="end">root ({min_x})</text></g>
<g transform="translate({scale_x(inf_x)},{scale_y(inf_m)})"><use xlink:href="#tp" /><text x="-1ex" y="2ex" class="end"><tspan>turning point, stationary point</tspan><tspan x="-1ex" dy="2ex">& local maximum ({inf_x}, {inf_m})</tspan></text></g>
<use xlink:href="#tp" transform="translate({scale_x(inf_x)},{scale_y(inf_m)})"/>
</g>
<g class="label_linear">
<text class="equation" x="-560" y="120"><tspan class="var">f</tspan><tspan dx="0.2ex" class="var">''</tspan><tspan dx="0.2ex">(</tspan><tspan class="var">x</tspan><tspan>) = {linear_a}</tspan><tspan class="var">x</tspan><tspan> {format_sign(linear_b)}</tspan></text>
<g transform="translate({scale_x(inf_x)}, 0)"><use xlink:href="#root"/><text x="-0.5ex" y="-0.2ex" class="end">root ({inf_x})</text></g>
</g>
<g class="label_concav">
<text x="-295" y="505"><tspan class="var">f</tspan><tspan dx="0.2ex">(</tspan><tspan class="var">x</tspan><tspan>) curve concave (downwards)</tspan></text>
<text x="345" y="505"><tspan class="var">f</tspan><tspan dx="0.2ex">(</tspan><tspan class="var">x</tspan><tspan>) convex (downwards)</tspan></text>
</g>
<g class="label_tangent">
<g transform="translate(-140,-860)"><text><tspan>tangent at inflection point:</tspan><tspan x="15" dy="2ex" class="var">y</tspan><tspan> = -147</tspan><tspan class="var">x</tspan><tspan> + 433</tspan></text></g>
</g>
</g>
''')
outss.append(fmt(fmt_out).split('|'))
id += 1
out_p = fmt('width="100%" height="100%" viewBox="-640 -1024 1280 1536"')
## Compile everything into an .svg file
myself = open(__file__, 'r').read() ## the contents of this very file
file_out = open(__file__[:__file__.rfind('.')] + '.svg', 'w') ## *.* -> *.svg
try: ## use try/finally so that file is closed even if write fails
file_out.write('''<?xml version="1.0" encoding="utf-8"?><!%s
%s%s%s\n%s%s''' % ('-' + '-', ## because SVG comments cannot have 2 consecutive '-'s
myself[ : myself.find('width',myself.find('<svg'))], ## assume width specified before height/viewBox
out_p, ## replace SVG width/height/viewBox with {out_p} & dynamic SVG block with {outs} contents
myself[myself.find('>',myself.find('<svg')) : myself.find('\n',myself.find('BEGIN_'+'DYNAMIC_SVG'))],
'\n'.join(outs), myself[myself.rfind('\n',0,myself.find('END_'+'DYNAMIC_SVG')) : ]))
finally:
file_out.close()
## SVG-Python near-polyglot framework version 2 by CMG Lee (Feb 2016) -->
அனுமதி
இந்த ஆக்கத்தின் காப்புரிமையாளரான நான் இதனைப் பின்வரும் உரிமத்தின் கீழ் வெளியிடுகின்றேன்:
இந்த கோப்பு Creative Commons Attribution-Share Alike 3.0 Unported உரிமத்தின் கீழ் உள்ளது.
- நீங்கள் சுதந்திரமாக:
- பகிர்ந்து கொள்ள – வேலையை நகலெடுக்க, விநியோகிக்க மற்றும் அனுப்ப
- மீண்டும் கலக்க – வேலைக்கு பழகிக்கொள்ள.
- கீழ்க்காணும் விதிகளுக்கு ஏற்ப,
- பண்புக்கூறுகள் – நீங்கள் பொருத்தமான உரிமையை வழங்க வேண்டும், உரிமத்திற்கான இணைப்பை வழங்க வேண்டும் மற்றும் மாற்றங்கள் செய்யப்பட்டிருந்தால் குறிப்பிட வேண்டும். நீங்கள் ஏற்புடைய எந்த முறையிலும் அவ்வாறு செய்யலாம், ஆனால் எந்த வகையிலும் உரிமதாரர் உங்களை அல்லது உங்கள் பயன்பாட்டிற்கு ஒப்புதல் அளிக்கும் படி பரிந்துரைக்க கூடாது.
- அதே மாதிரி பகிர் – நீங்கள் ரீமிக்ஸ் செய்தாலோ, உருமாற்றம் செய்தாலோ அல்லது பொருளை உருவாக்கினாலோ, உங்கள் பங்களிப்புகளை அல்லது இணக்கமான உரிமம் கீழ் அசலாக விநியோகிக்க வேண்டும்.
| GNU Free Documentation License விதிமுறைகளின் கீழ் இந்த ஆவணத்தை நகலெடுக்க, விநியோகிக்க மற்றும்/அல்லது மாற்றுவதற்கு அனுமதி வழங்கப்பட்டுள்ளது, Free Software Foundation;ஆல் வெளியிடப்பட்ட பதிப்பு 1.2 அல்லது அதற்குப் பிந்தைய பதிப்பு, மாற்றமில்லாத பிரிவுகள், முன் அட்டை உரைகள் மற்றும் பின் அட்டை உரைகள் இல்லாமல் வெளியிடப்பட்டது. GNU Free Documentation License என்ற தலைப்பில் உரிமத்தின் நகல் சேர்க்கப்பட்டுள்ளது.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue |
நீர் உமக்கு விருப்பமான உரிமத்தை தேர்ந்தெடுக்கலாம்.
Captions
Add a one-line explanation of what this file represents
Items portrayed in this file
சித்தரிப்பில் உள்ளது
some value
copyrighted ஆங்கிலம்
source of file ஆங்கிலம்
original creation by uploader ஆங்கிலம்
image/svg+xml
checksum ஆங்கிலம்
a61221eeba1b4683b672c939f4d93ab756a85a65
data size ஆங்கிலம்
17,862 பைட்டு
614 படவணு
512 படவணு
கோப்பின் வரலாறு
குறித்த நேரத்தில் இருந்த படிமத்தைப் பார்க்க அந்நேரத்தின் மீது சொடுக்கவும்.
| நாள்/நேரம் | நகம் அளவு சிறுபடம் | அளவுகள் | பயனர் | கருத்து | |
|---|---|---|---|---|---|
| தற்போதைய | 02:08, 4 பெப்ரவரி 2024 | 512 × 614 (17 KB) | wikimediacommons>Cmglee | Work around leading-or-trailing-nonbreaking-space-ignored rsvg bug: http://en.wikipedia.org/w/index.php?title=Wikipedia:SVG_help&diff=prev&oldid=1189400853 |
கோப்பு பயன்பாடு
பின்வரும் பக்க இணைப்புகள் இப் படிமத்துக்கு இணைக்கபட்டுள்ளது(ளன):
"https://ta.wiki.beta.math.wmflabs.org/wiki/படிமம்:Cubic_graph_special_points.svg" இலிருந்து மீள்விக்கப்பட்டது
