சூழ்தொடு வட்டம்

testwiki இலிருந்து
imported>InternetArchiveBot பயனரால் செய்யப்பட்ட 20:22, 19 ஏப்ரல் 2023 அன்றிருந்தவாரான திருத்தம் (Bluelink 1 book for விக்கிப்பீடியா:மெய்யறிதன்மை (20230419)) #IABot (v2.0.9.3) (GreenC bot)
(வேறுபாடு) ← பழைய திருத்தம் | ஆக அண்மைய திருத்தம் (வேறுபாடு) | புதிய திருத்தம் → (வேறுபாடு)
Jump to navigation Jump to search
சுற்றுவட்டங்கள்.

சூழ்தொடு வட்டம் அல்லது சுற்றுவட்டம் (circumscribed circle or circumcircle) என்பது ஒரு பல்கோணியின் ஒவ்வொரு முனையையும் தொட்டுக்கொண்டு இருக்குமாறு வரையப்படும் வட்டம் ஆகும். ஒரே நீளமும் கோணமும் கொண்ட பக்கங்களைக் கொண்ட சீரான பல்கோணங்கள் எல்லாவற்றுக்கும் சுற்றுவட்டம் வரைய இயலும். ஆனால் பக்க நீளங்கள் ஒரே அளவாக இல்லாத பல்கோணங்கள் யாவற்றுக்கும் சுற்று வட்டம் வரைய இயலாது எனினும், சிலவற்றுக்குச் சுற்றுவட்டம் வரைய இயலும். கீழ்க்காணும் படத்தில் ஒரு எடுத்துக் காட்டைப் பார்க்கலாம்.

பக்க நீளங்கள் வேறுபடும் ஒரு பல்கோணத்தைச் சுற்றி இருக்கும் சுற்றுவட்டம்

சுற்றுவட்டம் கொண்ட பல்கோணிகள், வட்டப் பல்கோணிகள் (cyclic polygon) எனப்படுகின்றன. சீரான பல்கோணிகள், இருசமபக்க சரிவகங்கள், முக்கோணங்கள், செவ்வகங்கள் வட்டப் பல்கோணிகள் ஆகும்.

சுற்றுவட்டத்தின் மையமானது சுற்றுவட்ட மையம் (circumcenter) என்றும் ஆரமானது சுற்றுவட்ட ஆரம் (circumradius) எனவும் அழைக்கப்படுகிறது.

முக்கோணங்கள்

சுற்றுவட்டம் (சிவப்பு) வரைதல், சுற்றுவட்ட மையம்-சிவப்புப் புள்ளி

அனைத்து முக்கோணங்களும் வட்ட முக்கோணங்கள் ஆகும். அதாவது அனைத்து முக்கோணங்களுக்கும் சுற்று வட்டங்கள் வரைய முடியும்.[nb 1]. ஒரு முக்கோணத்தின் சுற்றுவட்டமையமானது அம்முக்கோணத்தின் மூன்று உச்சிகளிலிருந்தும் சமதொலைவில் இருக்கும். அதே சமயம் ஒரு கோட்டுத்துண்டின் நடுக்குத்துக்கோட்டின் மீதுள்ள எந்தவொரு புள்ளியும் அக்கோட்டுத்துண்டின் இரு முனைகளிலிருந்தும் சமதொலைவில் இருக்கும். அதனால் முக்கோணத்தின் ஏதேனும் இரு பக்கங்களின் நடுக்கோடுகள் சந்திக்கும் புள்ளியானது முக்கோணத்தின் அந்த இரு பக்கங்களின் முனைகளிலிருந்து சமதொலைவில் இருக்கும். எனவே ஒரு முக்கோணத்தின் ஏதாவது இரு பக்கங்களின் நடுக்குத்துக்கோடுகள் சந்திக்கும் புள்ளியே அம்முக்கோணத்தின் சுற்றுவட்ட மையமாகும். ஒரு முக்கோணத்தின் சுற்றுவட்டமையத்தின் அமைவிடம் அம்முக்கோணத்தின் தன்மையைப் பொறுத்தது:

  • ஒரு முக்கோணம் குறுங்கோண முக்கோணமாக "இருந்தால், இருந்தால் மட்டுமே" சுற்றுவட்டமையம் அம்முக்கோணத்துக்குள் அமையும்.
  • ஒரு முக்கோணம் விரிகோண முக்கோணமாக "இருந்தால், இருந்தால் மட்டுமே" சுற்றுவட்டமையம் அம்முக்கோணத்துக்கு வெளியே அமையும்.
  • ஒரு முக்கோணம் செங்கோண முக்கோணமாக "இருந்தால், இருந்தால் மட்டுமே" சுற்றுவட்டமையம் அம்முக்கோணத்தின் செம்பக்கத்தின் மீதமையும். (இது தேலேசுத் தேற்றத்தின் ஒரு வடிவமாகும்)

முக்கோணத்தின் ஏதாவதொரு பக்கத்தின் அளவை அந்தப் பக்கத்திற்கு எதிரான கோணத்தின் சைன் மதிப்பால் வகுக்கக் கிடைக்கும் மதிப்பு, சுற்றுவட்டத்தின் விட்டத்தின் அளவாக இருக்கும். சைன் விதியின் விளைவாக முக்கோணத்தின் மூன்று பக்கங்களில் எந்தவொன்றைக் கொண்டும் சுற்றுவட்ட விட்டத்தைக் கணக்கிட முடிகிறது. முக்கோணத்தின் ஒன்பது-புள்ளி வட்டத்தின் விட்டத்தின் அளவு, சுற்றுவட்டத்தின் விட்டத்தின் அளவில் பாதியாக இருக்கும். ΔABC இன் சுற்றுவட்ட விட்டத்தின் அளவு:

diameter=abc2area=|AB||BC||CA|2|ΔABC|=abc2s(sa)(sb)(sc)=2abc(a+b+c)(a+b+c)(ab+c)(a+bc)

சுற்றுவட்டத்தின் விட்டத்திற்கான மற்றுமொரு வாய்ப்பாடு:[1]வார்ப்புரு:Rp

diameter=2areasinAsinBsinC.

எந்தவொரு முக்கோணத்திலும் அதன் சுற்றுவட்டமையமானது அம்முக்கோணத்தின் நடுக்கோட்டுச்சந்தியுடனும், செங்கோட்டுச்சந்தியுடனும் சேர்ந்து ஒரே கோட்டில் அமையும். இம்மூன்று புள்ளிகளும் அமையும் கோடு முக்கோணத்தின் ஆய்லர் கோடு ஆகும். சுற்றுவட்டமையமும் செங்குத்துச்சந்தியும் ஒன்றுக்கொன்று சமகோண இணையியமாகும்.

குறிப்புகள்

வார்ப்புரு:Reflist

மேற்கோள்கள்

  1. Dörrie, Heinrich, 100 Great Problems of Elementary Mathematics, Dover, 1965.

மேலும் பார்க்க


வார்ப்புரு:வடிவவியல் உருப்படி
பிழை காட்டு: <ref> tags exist for a group named "nb", but no corresponding <references group="nb"/> tag was found

"https://ta.wiki.beta.math.wmflabs.org/w/index.php?title=சூழ்தொடு_வட்டம்&oldid=101" இலிருந்து மீள்விக்கப்பட்டது