கோட்டுத்துண்டு

testwiki இலிருந்து
Jump to navigation Jump to search
கோட்டுத்துண்டின் வடிவியல் வரையறை

வடிவவியலில் கோட்டுத்துண்டு (Line segment) என்பது ஒரு கோட்டின் மீது அமைந்த இரு புள்ளிகளுக்கிடையேயுள்ள அக்கோட்டின் ஒரு பகுதியாகும். கோட்டுத்துண்டானது அவ்விரு புள்ளிகளுக்குமிடையே அக்கோட்டின் மீதுள்ள அனைத்துப் புள்ளிகளையும் கொண்டிருக்கும். முக்கோணம் மற்றும் சதுரத்தின் பக்கங்கள் கோட்டுத்துண்டுகளுக்கு எடுத்துக்காட்டுகளாகும். பொதுவாக, ஒரு பலகோணத்தின் இரு உச்சிப் புள்ளிகள் அடுத்துள்ள புள்ளிகளாக இருந்தால் அவற்றை இணைக்கும் கோட்டுத்துண்டு பலகோணத்தின் பக்கமாகவும். அடுத்துள்ள புள்ளிகளாக இல்லையென்றால் பலகோணத்தின் மூலைவிட்டமாகவும் இருக்கும். கோட்டுத்துண்டின் முனைப்புள்ளிகள் வட்டம் போன்ற வளைகோடுகளின் மீது அமைந்தால் அக்கோட்டுத்துண்டானது அந்த வளைவரையின் நாண் என அழைக்கப்படும்.

வரையறை

அல்லது , மீதமைந்த ஒரு வெக்டர் வெளி. V மேலும் V -ன் ஓர் உட்கணம் L என்க.

L={𝐮+t𝐯t[0,1]} எனில் L கோட்டுத்துண்டாகும்.

இங்கு 𝐮,𝐯V இரு வெக்டர்கள்.

வெக்டர்கள் 𝐮 மற்றும் 𝐮+𝐯 இரண்டும் கோட்டுத்துண்டின் முனைப்புள்ளிகள்.

சிலநேரங்களில் திறந்த மற்றும் மூடிய கோட்டுத்துண்டுகளை வேறுபடுத்திப் பார்க்கவேண்டியதாக இருக்கும். மேலே தரப்பட்ட வரையறை மூடிய கோட்டுத்துண்டைத் தரும். திறந்த கோட்டுத்துண்டினை கோட்டுத்துண்டு L -ன் உட்கணமாக பின்வருமாறு தரப்படுகிறது:

L={𝐮+t𝐯t(0,1)}

இங்கு 𝐮,𝐯V இரண்டும் வெக்டர்கள்..

கோட்டுத்துண்டை அதன் இரு முனைப்புள்ளிகளின் குவிச்சேர்வாக எழுதமுடியும்.

வடிவவியலில் சிலநேரங்களில், ஒரு புள்ளி B, A மற்றும் C ஆகிய இரு புள்ளிகளுக்கிடையே அமைய வேண்டுமானால், AB+BC=AC என இருக்க வேண்டும் என வரையறுக்கப்படுகிறது.

எனவே A =(ax,ay) மற்றும் C =(cx,cy) ஆகிய இரு முனைப்புள்ளிகளை உடைய கோட்டுத்துண்டின் சமன்பாடு:

(xcx)2+(ycy)2+(xax)2+(yay)2=(cxax)2+(cyay)2.

பண்புகள்

ஒரு கோட்டுத்துண்டு இணைந்த கணம் மற்றும் வெற்றில்லா கணம்.

V ஒரு இடவியல் வெக்டர் வெளியெனில் மூடிய கோட்டுத்துண்டு V. -லுள்ள ஒரு மூடிய கணமாகும். எனினும் V ஒரு பரிமாணமானதாக இருந்தால், இருந்தால் மட்டுமே திறந்த கோட்டுத்துண்டானது V -லுள்ள திறந்தகணமாக இருக்கும்.

சிதைக்கப்பட்ட நீள்வட்டமாக

ஒரு கோட்டுத்துண்டை சிற்றச்சின் நீளம் பூச்சியமாகக் கொண்டு சிதைக்கப்பட்ட ஒரு நீள்வட்டமாகக் கருதமுடியும். ஒரு நீள்வட்டத்தின் சிற்றச்சின் நீளம் பூச்சியமானால் இரு குவியங்களும் நீள்வட்டத்தின் முனைப்புள்ளிகளாகவும் மையதொலைத்தகவு ஒன்றாகவும் ஆகிறது.

மேற்கோள்கள்

  • David Hilbert: The Foundations of Geometry. The Open Court Publishing Company 1950, p. 4

வெளி இணைப்புகள்

வார்ப்புரு:Commons

"https://ta.wiki.beta.math.wmflabs.org/w/index.php?title=கோட்டுத்துண்டு&oldid=569" இலிருந்து மீள்விக்கப்பட்டது