சதுரம்

testwiki இலிருந்து
imported>Booradleyp1 பயனரால் செய்யப்பட்ட 16:23, 20 மே 2022 அன்றிருந்தவாரான திருத்தம் (removed Category:நாற்கரங்கள்; added Category:நாற்கரங்களின் வகைகள் using HotCat)
(வேறுபாடு) ← பழைய திருத்தம் | ஆக அண்மைய திருத்தம் (வேறுபாடு) | புதிய திருத்தம் → (வேறுபாடு)
Jump to navigation Jump to search

வார்ப்புரு:Dablink

சதுரம்

சதுரம், கேத்திரகணித அடிப்படை வடிவங்களில் ஒன்று. இது, நான்கு உச்சிகளையும், சம அளவிலான நான்கு கோட்டுத்துண்டுகளை பக்கங்களாகவும் கொண்ட, ஒரு இரு பரிமாண உருவமாகும். சதுரம் ஓர் ஒழுங்கு நாற்கரம் ஆகும்.

அடிப்படை உண்மைகள்

  • ABCD சதுரத்தில்
AB=BC=CD=AD
A=B=C=D=90 பாகைகள்.
AC=BD
  • ஒரு சதுரத்தின் ஒரு பக்கத்தின் நீளம் a எனில், அதன் சுற்றளவு a யின் நான்கு மடங்கு ஆகும்.
P=4a
  • மூலைவிட்டத்தின் நீளம்:
d=2a

விளக்கம்:

சதுரத்தின் ஒவ்வொரு கோணமும் செங்கோணம் என்பதால் இரு அடுத்துள்ள பக்கங்களும் ஒரு மூலைவிட்டமும் ஒரு செங்கோண முக்கோணத்தை அமைக்கின்றன. சதுரத்தின் பக்க அளவு a, மூலைவிட்டத்தின் நீளம் d எனில், பித்தகோரசு தேற்றத்தின்படி:

d2=a2+a2
d2=2a2
d=2a

சதுரத்தின் பரப்பு

சதுரத்தின் பரப்பளவு கணக்கிடல்

ஒரு சதுரத்தின் பரப்பளவு அதன் ஒரு பக்க அளவின் வர்க்கத் தொகையால் தரப்படுகிறது. உதாரணத்திற்கு, ஒரு சதுரத்தின் பக்க அளவு 5 மீட்டர் என்றால், அதன் பரப்பளவு 5 x 5 = 25 சதுர மீட்டர் ஆகும். 5 மீட்டர் பக்க நீளமுள்ள சதுரத்தை 1 மீட்டர் பக்க நீளமுள்ள சிறுசிறு சதுரங்களாகப் பிரித்தால் மொத்தம் 25 சிறு சதுரங்கள் கிடைக்கின்றன.

பொதுவாகச் சதுரத்தின் பரப்பு a எனில்:

A=a2.

மூலைவிட்டத்தின் மூலமாகவும் சதுரத்தின் பரப்பளவைக் காணலாம். சதுரத்தின் மூலைவிட்டத்தின் நீளம் d எனில் அச்சதுரத்தின் பரப்பளவு:

A=a2=(d2)2=d22.

சதுரத்தின் சுற்றுவட்ட ஆரம் R எனில்,

R=d

எனவே சதுரத்தின் பரப்பளவு:

A=2R2

சதுரத்தின் உள்வட்ட ஆரம் r எனில்,

r=a2

எனவே சதுரத்தின் பரப்பளவு:

A=4r2.

அடுக்கு இரண்டு என்பது சதுரத்தின் பரப்பளவாக எடுத்துக் கொள்ளப்பட்டதால்தான் அடுக்கு இரண்டானது ஆங்கிலத்தில் ஸ்கொயர் என அழைக்கப்பட்டது.

சமன்பாடுகள்

|x|+|y|=2

கார்ட்டீசியன் ஆள்கூற்று முறைமையில் ஆதிப்புள்ளியை மையமாகவும் 2 அலகுகள் பக்கநீளமும் கொண்ட சதுரத்தின் உச்சிகளின் ஆயதொலைவுகள்: (±1, ±1). சதுரத்தின் உட்புறம் அமையுமொரு புள்ளிகளின் ஆயதொலைவுகள் (xi, yi) , வார்ப்புரு:Nowrap, வார்ப்புரு:Nowrap ஆகும். இச் சதுரத்தின் சமன்பாடு:

max(x2,y2)=1, அதாவது "x2 அல்லது y2, இரண்டில் எது பெரியதோ அதன் மதிப்பு 1 ஆக இருக்கும்."

இச்சதுரத்தின் சுற்றுவட்டத்தின் ஆரம் மூலைவிட்டத்தின் நீளத்தில் பாதியாக இருக்கும். அதாவது

சுற்றுவட்டத்தின் ஆரம்:

R=2;.

சுற்றுவட்டத்தின் சமன்பாடு:

x2+y2=2.

சதுரத்தின் மற்றொரு சமன்பாடு:

சதுரத்தின் மையம்: (a, b) மற்றும் கிடைமட்ட அல்லது குத்து ஆரம் r எனில் அச்சதுரத்தின் சமன்பாடு:

|xa|+|yb|=r.

பண்புகள்

சதுரம் என்பது சாய்சதுரம், பட்டம், இணைகரம், நாற்கரம் மற்றும் செவ்வகம் ஆகியவற்றின் சிறப்பு வகையாகும். எனவே இவ்வடிவவியல் வடிவங்களின் பண்புகள் சதுரத்திற்கும் உண்டு:[1]

  • சதுரத்தின் எதிரெதிர் பக்கங்கள் இணையாகவும் சமமாகவும் இருக்கும்.
  • சதுரத்தின் நான்கு கோணங்களும் சமம். (ஒவ்வொன்றும் 360°/4 = 90° க்குச் சமம்.)
  • சதுரத்தின் நான்கு பக்கங்களும் சமம்.
  • இரு மூலைவிட்டங்களும் சம நீளமுள்ளவை.
  • சதுரத்தின் இரு மூலைவிட்டங்களும் ஒன்றையொன்று இருசமக் கூறிடும். மேலும் செங்குத்தாக வெட்டிக்கொள்ளும்.
  • சதுரத்தின் கோணங்களை அதன் மூலைவிட்டங்கள் இருசமக்கூறிடும்.

பிற விவரங்கள்

  • ஒரு சதுரத்தின் மூலைவிட்டங்கள் ஒவ்வொன்றின் நீளமும் அச்சதுரத்தின் பக்கநீளத்தைப்போல் 2 (கிட்டத்தட்ட 1.414) மடங்காகும். விகிதமுறா எண் என நிறுவப்பட்ட முதல் எண் 2.
  • கோணங்களை இருசமக்கூறிடும் சம நீளமுள்ள மூலைவிட்டங்கள் கொண்ட இணைகரமாகச் சதுரத்தை வரையறுக்கலாம்.
  • செவ்வகமாகவும் சாய்சதுரமாகவும் அமையக்கூடிய வடிவவியல் வடிவமாகச் சதுரத்தைக் கருதலாம்.
  • சதுரத்தைச் சுற்றி அதன் நான்கு உச்சிகளின் வழியாகச் செல்லும் வட்டத்தின் (சுற்று வட்டம்) பரப்பளவு சதுரத்தின் பரப்பைப்போல் π/2 (கிட்டத்தட்ட 1.571) மடங்காகும்.
  • சதுரத்துக்குள் அதன் பக்கங்களைத் தொட்டவாறு வரையப்பட்ட வட்டத்தின் (உள்வட்டம்) பரப்பளவு சதுரத்தின் பரப்பளவைப்போல் π/4 (கிட்டத்தட்ட 0.7854) மடங்காகும்.
  • ஒரு சதுரத்துடன் சம சுற்றளவுடைய எந்தவொரு நாற்கரத்தின் பரப்பளவையும் விட சதுரத்தின் பரப்பளவு பெரியது.[2]
  • சதுரம் அதிக சமச்சீருள்ள ஒரு வடிவம். ஒரு சதுரத்திற்கு நான்கு பிரதிபலிப்பு சமச்சீர் அச்சுகளும் நான்கு கிரம சுழற்சி சமச்சீரும் (through 90°, 180° , 270° கோண சுழற்சிகள்) உள்ளது. சதுரத்தின் சமச்சீர் குலம், ஒரு இருமுகக் குலம் ( D4).
  • ABCD சதுரத்தின் பக்கங்கள் AB, BC , CD, DA ஆகியவற்றை உள்வட்டம் தொடும் புள்ளிகள் முறையே E , F , G , H மற்றும் உள்வட்டத்தின் மேலுள்ள ஒரு புள்ளி P எனில்[3]:
2(PH2PE2)=PD2PB2.

தமிழ்ப் பெயர்

  • நாலாரம்  ( நாலு + ஆரம் )
  • நாலியாரம் ( நாலி+ ஆரம் )
  • நால்வாரி ( வரி -> வாரி )
  • நால்வாரிகை  ( வரி -> வாரி )

வரைதல்

கவராயமும் நேர்விளிம்பும் மட்டும் கொண்டு சதுரம் வரைதல்

கவராயமும் நேர்விளிம்பும் மட்டும் கொண்டு சதுரம் வரையும் விதம் இங்குள்ள அசைபடத்தில் காட்டப்பட்டுள்ளது.

வரைமுறை
  1. நேர்விளிம்பு கொண்டு ஒரு நேர்கோடு வரைக.
  2. கவராயம் கொண்டு இக்கோட்டின் மீதமைந்த ஏதேனுமொரு புள்ளியை மையமாகவும் ஒரு குறிப்பிட்ட ஆரமும் கொண்ட வட்டம் வரைக.
  3. இவ்வட்ட மையத்துக்கும் வட்டமையம் கோட்டை வெட்டும் புள்ளிக்கும் இடைப்பட்ட தூரத்தை ஆரமாகவும், வட்டம் கோட்டை வெட்டும் புள்ளியை மையமாகவும் கொண்டு ஒரு வட்டம் வரைக.
  4. இந்த இரண்டாவது வட்டம் முதல் வட்டத்தை வெட்டும் இரு புள்ளிகளை இணைத்து ஒரு கோட்டுத்துண்டு வரைக.
  5. இந்த கோட்டுத்துண்டு முதலில் வரைந்த கோட்டை சந்திக்கும் புள்ளியை மையமாகவும், இப்புள்ளிக்கும் முதல் வட்டத்தின் மையத்துக்கும் இடைப்பட்ட தூரத்தை ஆரமாகவும் கொண்டு மூன்றாவது வட்டமொன்று வரைக.
  6. இந்த வட்டம் கோட்டுத்துண்டை இரு புள்ளிகளில் சந்திக்கும்.
  7. இந்த இரு புள்ளிகள் ஒவ்வொன்றையும் முதலில் வரைந்த வட்ட மையத்துடன் இணைத்து வரையப்படும் கோட்டை இருபுறங்களிலும் நீட்டித்தால், அக்கோடுகள் இரண்டும் முதல் வட்டத்தைச் சந்திக்கும் நான்கு புள்ளிகளும் ஒரு சதுரத்தை உருவாக்கும்.

மேற்கோள்கள்

வார்ப்புரு:Reflist

"https://ta.wiki.beta.math.wmflabs.org/w/index.php?title=சதுரம்&oldid=13" இலிருந்து மீள்விக்கப்பட்டது