சேவாவின் தேற்றம்

testwiki இலிருந்து
imported>Booradleyp1 பயனரால் செய்யப்பட்ட 14:46, 9 திசம்பர் 2022 அன்றிருந்தவாரான திருத்தம் (முக்கோணத்தின் பரப்பளவைப் பயன்படுத்தி நிறுவல்)
(வேறுபாடு) ← பழைய திருத்தம் | ஆக அண்மைய திருத்தம் (வேறுபாடு) | புதிய திருத்தம் → (வேறுபாடு)
Jump to navigation Jump to search
சேவாவின் தேற்றம், வகை 1: மூன்று கோடுகளும் ABC முக்கோணத்துக்குள் O புள்ளியில் சந்திக்கின்றன.
சேவாவின் தேற்றம், வகை 1: மூன்று கோடுகளும் ABC முக்கோணத்துக்கு வெளியே O புள்ளியில் சந்திக்கின்றன.

சேவாவின் தேற்றம் (Ceva's theorem) யூக்ளீடிய வடிவவியலில் முக்கோணங்கள் பற்றிய தேற்றமாகும்.

முக்கோணம் ABC இல் அதன் எந்தவொரு பக்கத்தின் மீதும் அமையாத புள்ளி O இலிருந்து அதன் உச்சிப்புள்ளிகளுக்கு வரையப்படும் கோடுகள் AO, BO, CO மூன்றும் அந்தந்த உச்சிகளுக்கு எதிரமைந்த முக்கோணப் பக்கங்களை முறையே வெட்டும்புள்ளிகள் முறையே D, E, F எனில். (கோட்டுத்துண்டுகள் AD, BE, CF முக்கோணத்தின் விழுகோடுகள் எனப்படுகின்றன.)திசையிடப்பட்ட கோட்டுத்துண்டுகளின் நீளங்களைக் கொண்டு இத்தேற்றத்தின் முடிவு:

AFFBBDDCCEEA=1.

XY கோட்டின் நிலையான திசைப்போக்குடன், Y இன் இடப்புறமாக X இருந்தால் XY நீளமானது நேர்மமாகவும் Y இன் வலப்புறமாக X இருந்தால் XY நீளமானது எதிர்ர்மமாகவும் எடுத்துக்கொள்ளப்படுகிறது. எடுத்துக்காட்டாக,

A , B இரண்டுக்கும் இடையில் F இருந்தால், விகிதம் AF/FB = +, மாறாக இருந்தால் AF/FB = -

சற்றே மாற்றியமைக்கப்பட்ட மாறுதலைக் கூற்றும் உண்மையாக இருக்கும்:

முக்கோணத்தின் பக்கங்கள் BC, AC and AB மூன்றின் மீதும் முறையே D, E, F ஆகிய புள்ளிகள் : AFFBBDDCCEEA=1, என்ற முடிவை நிறைவுசெய்யும் வகையில் எடுத்துக்கொள்ளப்பட்டால்:

AD, BE, CF மூன்றும் ஒரே புள்ளியில் சந்திக்கும் கோடுகள் அல்லது மூன்றும் இணைகோடுகளாக இருக்கும்.

1678 ஆம் ஆண்டில் தனது நூலில் (De lineis rectis) இத்தேற்றத்தை பதிப்பிட்ட இத்தாலியக் கணிதவியலாளர் ஜியோவான்னி சேவாவின் பெயரால் அழைக்கப்பட்டாலும் இது பதினோராம் நூற்றாண்டிலேயே சரகோசா அரசரால் (Yusuf al-Mu'taman ibn Hud) நிறுவப்பட்டது. சரகோசா.[1]

இத்தேற்றம், மெனலாசின் தேற்றத்தை ஒத்துள்ளது. இரண்டு தேற்றங்களிலுமுள்ள சமன்பாடுகள் இரண்டும் குறியளவில் மட்டுமே வேறுபடுகின்றன. இரு தேற்றங்களும் ஒன்றுக்கொன்று வீழ்ப்பு இருமமாக அமைகின்றன.[2]

நிறுவல்கள்

இத்தேற்றத்துக்குப் பல நிறுவல்கள் உள்ளன.[3][4]

முக்கோணத்தின் பரப்பளவைப் பயன்படுத்தி நிறுவல்

புள்ளி O, முக்கோணத்துள் இருக்கும்போது தேற்ற முடிவின் இடப்பக்கத்திலுள்ள விகிதங்கள் மூன்றுமே நேர்மமாகவும், புள்ளி O முக்கோணத்துக்கு வெளியே இருந்தால், ஒரு விகிதம் நேர்மமாகவும் மற்ற இரு விகிதங்களும் எதிர்மமாகவும் இருக்கும். எனவே இடப்பக்க விகிதப் பெருக்கற்பலன் O இன் இருநிலையிலும் நேர்மமாகவே இருக்கும்.

தரப்பட்ட உயரம் கொண்ட முக்கோணத்தின் பரப்பளவு முக்கோணத்தின் அடிப்பக்க நீளத்துடன் விகிதசமமாக இருக்குமென்பதால் கீழுள்ள முடிவு கிடைக்கிறது:

|BOD||COD|=BDDC=|BAD||CAD|.

இதிலிருந்து:

BDDC=|BAD||BOD||CAD||COD|=|ABO||CAO|.

(A, O இரண்டும் BC இன் எதிர்ப்புறங்களில் இருந்தால் - குறிக்குப் பதில் + ஐ பயன்படுத்த வேண்டும்.)

இதேபோல,

CEEA=|BCO||ABO|,
AFFB=|CAO||BCO|.

இம்மூன்று சமன்பாடுகளையும் பெருக்க தேற்றத்தின் முடிவு கிடைக்கிறது:

|AFFBBDDCCEEA|=1,

மெனலாசின் தேற்றத்தை பயன்படுத்தி நிறுவல்

மெனலாசின் தேற்றத்தைப் பயன்படுத்தியும் இத்தேற்றத்தை எளிதாக நிறுவலாம்.[5]

ACF முக்கோணத்தில் BOE ஒரு குறுக்குவெட்டி. எனவே மெனலாசின் தேற்றப்படி,

ABBFFOOCCEEA=1

இதேபோல BCF முக்கோணத்தில் AOD ஒரு குறுக்குவெட்டியாதலால்,

BAAFFOOCCDDB=1.

இவ்விரு முடிவுகளையும் ஒன்றையொன்றால் வகுக்க சேவாவின் தேற்றத்தின் முடிவு பெறப்படுகிறது:

|AFFBBDDCCEEA|=1,

மேற்கோள்கள்

வார்ப்புரு:Reflist

மேலதிக வாசிப்புக்கு

வெளியிணைப்புகள்

  1. வார்ப்புரு:Cite book
  2. வார்ப்புரு:Cite journal
  3. வார்ப்புரு:Cite book
  4. Alfred S. Posamentier and Charles T. Salkind (1996), Challenging Problems in Geometry, pages 177–180, Dover Publishing Co., second revised edition.
  5. Follows வார்ப்புரு:Cite book
"https://ta.wiki.beta.math.wmflabs.org/w/index.php?title=சேவாவின்_தேற்றம்&oldid=1613" இலிருந்து மீள்விக்கப்பட்டது