பித்தேகோரசு தேற்றம்

testwiki இலிருந்து
imported>Booradleyp1 பயனரால் செய்யப்பட்ட 06:19, 8 ஏப்ரல் 2024 அன்றிருந்தவாரான திருத்தம் (added Category:வார்த்தைகளற்ற நிறுவல்கள் using HotCat)
(வேறுபாடு) ← பழைய திருத்தம் | ஆக அண்மைய திருத்தம் (வேறுபாடு) | புதிய திருத்தம் → (வேறுபாடு)
Jump to navigation Jump to search

வார்ப்புரு:Infobox mathematical statement பிதாகரஸ் தேற்றம் அல்லது பித்தேகோரசு தேற்றம் அல்லது பைத்தகரசின் தேற்றம் (Pythagorean theorem அல்லது Pythagoras' theorem) என்பது ஒரு செங்கோண முக்கோணத்தில் உள்ள மூன்று பக்கங்களுக்கும் இடையே உள்ள தனிச்சிறப்பான ஒரு தொடர்பைக் கூறும் ஒரு கூற்று.

தேற்றத்தின் கூற்று

ஒரு செங்கோண முக்கோணத்தில், அதன் செம்பக்கத்தின் (கர்ணத்தின்) நீளத்தின் இருமடியானது, மற்ற பக்க நீளங்களின் இருமடிகளின் கூட்டுக்கு ஈடு (சமம்).

இத்தேற்றத்தை கிரேக்க நாட்டு கணிதவியல் அறிஞர், மெய்யியல் அறிஞராகிய பித்தகோரசு கண்டுபிடித்தார் என்று பொதுவாக நம்பப்படுவதால், அவர் பெயரால் இத்தேற்றம் வழங்குகின்றது [1]. ஆனால் இத்தேற்றத்தின் உண்மை அவர் காலத்திற்கு மிக முன்னமேயே அறியப்பட்டுப் பயன்பாட்டில் இருந்து வந்துள்ளது.

செங்கோண முக்கோணத்தின் மிகப்பெரிய பக்கமாகிய செம்பக்கம் அல்லது கர்ணத்தின் நீளத்தை c என்று கொண்டு, மற்ற இரு பக்கங்களின் (“தாங்கிப் பக்கங்களின்”) நீளங்களை a,bஎன்று குறித்தால், பித்தகோரசு தேற்றம் தரும் சமன்பாடு:

a2+b2=c2

இப்பொழுது செம்பக்கத்தின் (கர்ணத்தின்) நீளத்தை நேரடியாக அறிய:

c=a2+b2.

செம்பக்கத்தின் நீளமும், மற்றொரு பக்கத்தின் நீளமும் தெரிந்திருந்தால் மூன்றாவது பக்கத்தின் நீளத்தைக் கீழ்க்காணுமாறு அறியலாம்:

a=c2b2.
b=c2a2.

இந்தப் பித்தேகோரசின் தேற்றத்தின் நீட்சியாக அல்லது பொதுமைப்பாடாகச் செங்கோண முக்கோணம் மட்டுமல்லாமல் எந்த ஒரு (யூக்கிளிடிய சமதள) முக்கோணத்திற்கும் பொருந்துமாறு கோசைன்களின் விதி வகுக்கப்படுகின்றது. இந்தக் கோசைன்களின் விதிப்படி, மூன்றாவது பக்கத்தின் நீளத்தை அறிய, மற்ற இரு பக்கங்களின் நீளங்களும், அவற்றுக்கிடையே உள்ள கோணமும் அறிந்திருக்க வேண்டும். மற்ற இரு பக்கங்களுக்கும் இடையே உள்ள கோணம் செங்கோணமாக (90°) இருந்தால், கோசைன்களின் விதி பித்தகோரசின் விதியாகச் சுருங்கிவிடும்.

படிமம்:Pythagorus semi circle.jpg
ஒரு செங்கோண முக்கோணத்தின் ஒவ்வொரு பக்கங்களின் மீதும் அரைவட்டங்கள் காட்டப்பட்டுள்ளன. செம்பக்கத்தின் (கர்ணத்தின்) மீதுள்ள சீரான வடிவத்தின் பரப்பளவு மற்ற இரு பக்கங்களின் மீதுள்ள சீரான வடிவங்களின் பரப்புகளின் கூட்டுக்கு ஈடு. (π/8)a2+(π/8)b2=(π/8)c2

பித்தேகோரசின் விதியை வடிவங்களின் துணைகொண்டு காட்ட ஒவ்வொரு பக்கத்தின் இருமடியைக் காட்ட ஒவ்வொரு பக்கத்தின் மீதும் ஒரு கட்டம் (சதுரம்) வரைந்து காட்டப்பட்டுள்ளது; அது போலவே, சீரான எவ்வடிவும் இருக்கலாம் என்பதற்காக, அருகில் உள்ள படத்தில் ஒவ்வொரு பக்கங்களின் மீதும் அரைவட்டங்கள் காட்டப்பட்டுள்ளன. செம்பக்கத்தின் மீதுள்ள சீரான வடிவத்தின் பரப்பளவு மற்ற இரு பக்கங்களின் மீதுள்ள சீரான வடிவங்களின் பரப்புகளின் கூட்டுக்கு ஈடு. இதே போலச் சமபக்க முக்கோணங்கள், சீர் அறுகோணங்கள் போன்றவற்றையும் அமைத்துக் காட்டலாம்.

தேற்றத்தின் பிற வடிவங்கள்

செங்கோண முக்கோணத்தின் மிகப்பெரிய பக்கமாகிய செம்பக்கம் அல்லது கர்ணத்தின் நீளத்தை c என்று கொண்டு, மற்ற இரு பக்கங்களின் (“தாங்கிப் பக்கங்களின்”) நீளங்களை a,bஎன்று குறித்தால், பித்தகோரசு தேற்றம் தரும் சமன்பாடு:

a2+b2=c2

இப்பொழுது செம்பக்கத்தின் நீளத்தை பின்வரும் வாய்ப்பாட்டால் கணிக்கலாம்:

c=a2+b2.

செம்பக்கத்தின் நீளமும், மற்றொரு பக்கத்தின் நீளமும் தெரிந்திருந்தால் மூன்றாவது பக்கத்தின் நீளத்தைக் கீழ்க்காணுமாறு அறியலாம்:

a=c2b2.
b=c2a2.

பித்தாகரசு தேற்றம் ஒரு செங்கோண முக்கோணத்தின் பக்கங்களுக்கு இடையேயுள்ள தொடர்பைத் தருகிறது. இதனால் ஒரு செங்கோண முக்கோணத்தின் இரு பக்க அளவுகள் தெரிந்தால் அதன் மூன்றாவது பக்கத்தை இத் தேற்றத்தின் முடிவைப் பயன்படுத்திக் கணிக்க முடியும்.

இத் தேற்றத்தின் கிளைமுடிவாக, ஒரு செங்கோண முக்கோணத்தின் செம்பக்கத்தின் அளவு மற்ற இரு பக்க அளவுகளைவிட அதிகமானதாகவும், ஆனால் மற்ற இரு பக்க அளவுகளின் கூடுதலைவிடச் சிறியதாகவும் இருக்கும் என்ற கூற்றைக் கொள்ளலாம்.

பித்தகோரசின் தேற்றத்தின் நீட்சியாக அல்லது பொதுமைப்பாடாகச் செங்கோண முக்கோணம் மட்டுமல்லாமல் எந்த ஒரு (யூக்கிளிடிய சமதள) முக்கோணத்திற்கும் பொருந்துமாறு கோசைன்களின் விதி உள்ளது. இவ்விதியைப் பயன்படுத்தி எந்தவொரு முக்கோணத்திலும் அதன் இரு பக்கங்களும் அவற்றுக்கு இடைப்பட்ட கோணமும் தெரிந்தால் முக்கோணத்தின் மூன்றாவது பக்கத்தைக் கணிக்கலாம். மற்ற இரு பக்கங்களுக்கும் இடையே உள்ள கோணம் செங்கோணமாக (90°) இருந்தால், கோசைன்களின் விதி பித்தகோரசின் விதியாகச் சுருங்கிவிடும்.

நிறுவல்

பித்தேகோரசு தேற்றத்திற்குப் பல நிறுவல் வழிகள் உள்ளன. அதிக நிறுவல்கள் பெற்ற தேற்றம் என்னும் புகழ் பெற்றது இத்தேற்றம். எலிசா சுகாட் லூமிசு (Elisha Scott Loomis) எழுதிய பித்தகோரியன் முன்மொழிவு (Pythagorean Proposition), என்னும் நூலில் 367 நிறுவல்களைத் தொகுத்து வழங்கியுள்ளார்.

பித்தகோரசின் நிறுவல்

பித்தகோரசு நிறுவல்

பித்தகோரசு தேற்றமானது பித்தகோரசின் காலத்திற்கு முன்பாகவே அறியப்பட்டிருந்தாலும், பித்தகோரசு தான் அத் தேற்றத்தை முதலில் நிரூபித்தவர் ஆவார்[2]. அவர் அளித்த நிறுவல் மிகவும் எளிமையானது. மேலும் அது மறுவரிசைப்படுத்தல் மூலமான நிறுவல் என அழைக்கப்படுகிறது.

படத்தில் உள்ள இரு பெரிய சதுரங்கள் ஒவ்வொன்றும் நான்கு முற்றொப்பான முக்கோணங்களைக் கொண்டுள்ளன. ஆனால் இரு சதுரங்களிலும் அவை வெவ்வேறு இடங்களில் உள்ளன. எனவே இவ்விரு சதுரங்களுக்குள்ளும் காணப்படும் வெள்ளை நிறப்பகுதிகள் சமமான பரப்பளவு கொண்டிருக்க வேண்டும். அந்த பரப்பளவுகளைச் சமப்படுத்த பித்தகோரசு தேற்றத்தின் கிடைக்கும்[3].

வடிவொத்த முக்கோணங்கள் வாயிலாக நிறுவல்

வடிவொத்த முக்கோணங்களைக் கொண்டு நிறுவதல்

ABC என்பது ஒரு செங்கோண முக்கோணமாக இருக்கட்டும். C என்னும் முனையில் செங்கோணம் உள்ளது. C இல் இருந்து எதிர்ப் பக்கத்துக்கு ஒரு செங்குத்துக் கோடு வரைவோம். இது எதிர்ப்பக்கமாகிய AB இல் H என்னும் இடத்தில் வெட்டட்டும். இப்பொழுது புதிய முக்கோணமாகிய ACH முதலில் எடுத்துக்கொண்ட ABC என்னும் முக்கோணத்துடன் வடிவொத்த முக்கோணம் ஆகும். ஏனெனில் இரண்டுமே செங்கோண முக்கோணத்தையும், A என்னும் கோணத்தை பொதுவாகவும் கொண்டிருப்பதால் (மூன்றாவது கோணமும் ஒன்றாகத்தான் இருத்தல் வேண்டும்), இரு முக்கோணங்களும் வடிவொத்த முக்கோணங்கள். இதே போன்ற காரணங்களால், முக்கோணங்கள் ABC, CBH ஆகிய இரண்டும் வடிவொத்த முக்கோணங்கள். வடிவொத்த முக்கோணங்கள் ஆகையால், அவற்றின் பக்க நீளங்களின் விகிதங்கள் ஒத்ததாக இருக்கும்.

BC=a,AC=b, and AB=c,

எனவே

ac=HBa and bc=AHb.

இவற்றைக் கீழ்க்காணுமாறு எழுதலாம்:

a2=c×HB and b2=c×AH.

இவ்விரண்டு சமன்பாடுகளையும் கூட்டினால், நாம் பெறுவது:

a2+b2=c×HB+c×AH=c×(HB+AH)=c2.

மேலுள்ளவற்றில் இருந்து பித்தகோரசு தேற்றத்தைப் பெறுகின்றோம்:

a2+b2=c2.

யூக்ளிடின் நிறுவல்

படம் 1-யூக்ளிடின் "கூறுகள்" (Elements) என்னும் நூலில் உள்ள நிறுவல்

யூக்ளிடின், "கூறுகள்" ("Elements") என்னும் நூலில் முதல் புத்தகத்தில் முன்வைப்பு 47 இல், பித்தகோரசின் தேற்றத்தைக் கீழ்க்காணும் ஏரண காரணங்களைக் கொண்டு நிறுவியுள்ளார்:

படம் 1 இல்,

  • A, B, C ஆகிய மூன்றும் ஒரு செங்கோண முக்கோணத்தின் மூலைகளாக இருக்கட்டும்.
  • செங்கோணம் A இல் இருக்கட்டும். A இல் இருந்து எதிர்ப்புறமாகிய செம்பக்கத்துக்கு (கர்ணத்துக்கு) ஒரு செங்குத்துக்கோடு வரையப்படுகிறது.
  • இந்தச் செங்குத்துக்கோடு செம்பக்கத்தின் மீதுள்ள சதுரத்தின் வழியாக நீண்டு செல்லட்டும்.
  • இந்தச் செங்குத்துக் கோடு, செம்பக்கத்தின் மீதுள்ள சதுரத்தை இரண்டு செவ்வகங்களாகப் பிரிக்கின்றது.
  • இந்த இரண்டு செவ்வகங்களும் மற்ற இரு பக்கங்களின் மீதுள்ள சதுரங்களின் பரப்பளவுக்குச் சமம்.

முறையான நிறுவல்

யூக்ளிடின் முறையான நிறுவலுக்கு நான்கு சிறுதேற்றங்கள் தேவை:

  1. இரு முக்கோணங்களுக்கிடையே முறையாக இரு பக்கங்கள் ஒன்றுக்கொன்று சமமாக இருந்து, அவற்றுக்கு இடையே உள்ள கோணமும் ஒன்றாக இருந்தால் அம் முக்கோணங்கள் முற்றொருமை முக்கோணங்களாகும்.
  2. ஒரு முக்கோணத்தின் பரப்பளவு, அதன் அடியாகக் கொண்ட பக்கத்தைக் கொண்டு முக்கோணத்தின் குத்துயரமே கொண்ட ஒரு இணைகரத்தின் பரப்பளவில் பாதி.
  3. ஒரு சதுரத்தின் பரப்பளவு அதன் பக்க நீளத்தின் இருமடி
  4. எந்த ஒரு செவ்வகத்தின் பரப்பளவும் அதன் இரு அண்டைப் பக்கநீளங்களின் பெருக்குத்தொகை (மேலுள்ள சிறுதேற்றம் 3 இன் விளைவு).
நிறுவல்
படம் 2:இரு புதியகோடுகளுடன் விளக்கம்
  1. ACB என்பது ஒரு செங்கோண முக்கோணமாக இருக்கட்டும். அதன் செங்கோணம் CAB.
  2. BC, AB, CA, ஆகிய ஒவ்வொரு பக்கத்தின் மீதும் CBDE, BAGF, ACIH, என்னும் சதுரங்களை முறையாக வரையவும்.
  3. A இல் இருந்து , BD, CE களுக்கு இணையாக கோடுவரையவும். இது BC மற்றும் DE ஐ K மற்றும் L, இடங்களில் முறையே செங்க்குத்தாக வெட்டும்.
  4. CF, AD முதலியவற்றை இணைத்து BCF, BDA. ஆகிய முக்கோணங்களை ஆக்குக.
  5. கோணங்கள் CAB , BAG ஆகிய இரண்டும் செங்கோணங்கள்; ஆகவே C, A, G ஆகிய மூன்றும் ஒருகோட்டில் அமரும் புள்ளிகள். #அதைப்போலவே B, A, H ஆகிய மூன்றும் ஒருகோட்டுப்புள்ளிகள்.
  6. கோணங்கள் CBD, FBA ஆகிய இரண்டும் செங்கோணங்கள்; ஆகவே கோணம் ABD, கோணம் FBC ஆகிய இரு கோணங்களும் செங்கோணம் கூட்டல் கோணம் ABC ஆக இருப்பதால் இரண்டும் சமம்.
  7. AB, BD ஆகிய இரண்டும் FB, BC ஆகிய இரண்டுக்கும் முறையே ஈடு ஆகையால், முக்கோணம் ABD, முக்கோணம் FBC இக்கு ஈடாக இருத்தல் வேண்டும்.
  8. புள்ளி A ஆனது K , L உடன் நேர்க்கோட்டில் அமர்வதால் BDLK என்னும் செவ்வகம் ABD என்னும் முக்கோணத்தின் பரப்பளவை போல் இரு மடங்காகும்..
  9. முனை C ஆனது A, G உடன் நேர்க்கோட்டில் அமர்வதால், BAGF என்னும் சதுரம் FBC என்னும் முக்கோணத்தை போல் இருமடங்கு பரப்பளவு கொண்டது.
  10. எனவே BDLK என்னும் செவ்வகம் BAGF என்னும் சதுரத்தின் பரப்பளவு கொண்டிருக்கும். அது AB2 சமம்.
  11. அதே போல, CKLE என்னும் செவ்வகம் ACIH என்னும் சதுரத்தின் பரப்பளவிற்கு ஈடாக இருக்கும். அது AC2 இக்குச் சமம்.
  12. மேலுள்ள இரண்டு முடிவுகளையும் சேர்த்தால், AB2 + AC2 = BD × BK + KL × KC
  13. BD = KL என்பதால், BD* BK + KL × KC = BD(BK + KC) = BD × BC
  14. எனவே AB2 + AC2 = BC2, ஏனெனில் CBDE என்பது ஒரு சதுரம்.

இந்த நிறுவல் யூக்கிளிடின் "கூறுகள்" நூலில் முதல் தொகுதியில் 47 ஆவது முன்வைப்பாக உள்ளது 1.47.[4]

இயற்கணித நிறுவல்

A,B,C என்பன ஒரு செங்கோண முக்கோணத்தின் பக்கநீளங்கள். முற்றொருமையான நான்கு செங்கோண முக்கோணங்களைப் படத்தில் உள்ளவாறு அடுக்கினால், நடுவே C என்னும் பக்கம் கொண்ட சதுரம் கிடைக்கும். இப்படத்தைக் கொண்டு பித்தகோரசின் தேற்றத்தை நிறுவலாம்

இயற்கணித முறையைப் பின்பற்றிக் கீழ்க்காணும் காரண கருத்தோட்டத்தின் படி நிறுவலாம். இதற்கு அருகில் உள்ள படம் உதவும்.

  • படத்தில் நீல நிறத்தில் C என்னும் பக்கம் கொண்ட சதுரமானது, நான்கு ஒரே அளவும் வடிவும் உடைய செங்கோண முக்கோணங்களை அடுக்கி நடுவே அமைக்கப்பட்டுள்ளது.
  • நீல நிறச் சதுரமும், மற்ற நான்கு முக்கோணங்களும் சேர்ந்து இன்னும் பெரிய சதுரம் உருவாகி இருப்பதையும் பார்க்கவும்.
  • இப்பெரிய சதுரத்தின் பக்க நீளம் (A+B) என்பதையும் நோக்கவும்.
  • A , B பக்கநீளங்களுடைய ஒரு சிறு செங்கோண முக்கோணத்தின் பரப்பளவு:
12AB.
  • நடுவே நீல நிறத்தில் சதுரத்தின் பரப்பளவு C2.
  • எனவே, இப்படத்தில் உள்ள பல்வேறு வடிவங்களின் மொத்தப் பரப்பளவு:
4(12AB)+C2.(1)
  • ஆனால் யாவற்றையும் அடக்கி இருக்கும் பெரிய சதுரத்தின் பக்க அளவு A + B, எனவே அதன் பரப்பளவு:
(A+B)2=A2+2AB+B2(2)
  • (1), (2) இரண்டும் பெரிய சதுரத்தின் பரப்பளவையே தருகின்றன. எனவே அவற்றைச் சமப்படுத்த:
A2+2AB+B2=4(12AB)+C2.
A2+2AB+B2=2AB+C2

இப்பொழுது 2AB ஐ மேலுள்ள ஈடுகோளின் இருபக்கங்களில் இருந்தும் கழித்தால்,

A2+B2=C2

மீள்வரிசைப்படுத்தல் வாயிலாக நிறுவல்

இயங்கு படமாக நான்கு ஒத்த செங்கோண முக்கோணங்களை நகர்த்தி நிறுவுதல்
நிறுவலை இயங்கு படமாக வடிவங்களை நகர்த்திக் காட்டுதல்.
விரிவான மீள்வரிசைப்படுத்தல் மூலம் நிறுவல்
பக்கநீளங்கள் 3, 4, 5 அலகுகள் கொண்ட செங்கோண முக்கோணம் ஒன்றைக்கொண்டு பித்தேகோரசு தேற்றத்தின் நிறுவலைக் காட்சிப்படுத்தியுள்ளார் கி.மு 500-200 காலப்பகுதியைச் சேர்ந்த சௌ பை சுவான் சுங் என்பவர்.

வகையீடுகளைப் பயன்படுத்தி நிறுவுதல்

ஒரு செங்கோண முக்கோணத்தின் ஒரு பக்க அளவில் ஏற்படும் மாற்றத்தினால் அதன் கர்ணத்தின் அளவில் ஏற்படும் மாற்றத்தைக் கணித்து, நுண்கணிதத்தையும் பயன்படுத்தினால் பித்தகோரசு தேற்றத்தைப் பெறலாம்.[5][6][7]

வகையீடுகள் மூலம் நிறுவலுக்கான படம்

படத்தின் மேற்பக்கத்தில்,

முக்கோணம் ABC ஒரு செங்கோண முக்கோணம். அதன் செம்பக்கம் BC.

படத்தின் கீழ்பக்கத்தில்,

செம்பக்கம் BC இன் நீளம் y; பக்கம் AC இன் நீளம் x; பக்கம் AB இன் நீளம் a.
செம்பக்கம் BCக்குச் செங்குத்தாக CE இருக்குமாறு E எடுத்துக்கொள்ளப்படுகிறது.
நிறுவல்
  • x இன் அளவு அதிகரிக்கும் மிகச்சிறிய அளவு dx எனில், பக்கம் ACD வரை சற்று நீட்டிக்க, y ம் dy அளவு அதிகரிக்கிறது.
  • dx , dy இரண்டும் CDE முக்கோணத்தின் இரு பக்கங்களாகின்றன.
  • முக்கோணம் CDE ஒரு செங்கோண முக்கோணமாக அமைகிறது. மேலும் அது முக்கோணம் ABC க்குத் தோராயமாக வடிவொத்ததாகவும் அமைகிறது. இதனால் இவ் விரு முக்கோணங்களின் ஒத்தபக்கங்களின் விகிதங்கள் சமமாக இருக்கும்:
dydx=xy.
ydyxdx=0.
y2x2=C,

இத்தீர்வில் x = 0, y = a எனப் பிரதியிட C = a 2 கிடைக்கிறது.

y2=x2+a2.

(dx , dy க்குப் பதிலாக எல்லைகளைப் பயன்படுத்தினால் இந் நிறுவம் மேலும் மேம்பட்டதாக அமையும்.)

மறுதலை

பித்தகோரசு தேற்றத்தின் மறுதலையும் உண்மையாகும்:[8]

மறுதலைக் கூற்று

வார்ப்புரு:Nowrap என்ற முடிவை நிறைவு செய்யும் நேர் எண்கள் a, b, c எனில், இம் மூன்று எண்களையும் பக்கங்களாகக் கொண்டு ஒரு முக்கோணம் வரையலாம்; மேலும் அம் முக்கோணம், a , b பக்கங்களுக்கு இடையே செங்கோணத்தைக் கொண்ட செங்கோண முக்கோணமாகவும் இருக்கும்.

மாற்றுக் கூற்று

a, b, c ஐப் பக்கங்களாகக் கொண்ட முக்கோணத்தில் வார்ப்புரு:Nowrap எனில், a , b பக்கங்களுக்கிடையேயான கோணம் 90° ஆகும்.

இந்த மறுதலை யூக்ளிடின் ’கூறுகள்’ புத்தகத்தில் உள்ளது (புத்தகம் I, முன்வைப்பு 48):[9]

ஒரு முக்கோணத்தின் ஒரு பக்கத்தின் மீது வரையப்படும் சதுரம் முக்கோணத்தின் மற்ற இரு பக்கங்களின் மீது வரையப்படும் இரு சதுரங்களின் கூடுதலுக்குச் சமமாக இருந்தால் அந்த இரு பக்கங்களுக்கு இடைப்பட்ட கோணம் செங்கோணம் ஆகும்.அம் முக்கோணம் செங்கோண முக்கோணமாகும்.

இக் கூற்றினை கொசைன் விதியைப் பயன்படுத்தி நிறுவலாம். கீழ்க்கண்டவாறும் நிறுவலாம்:

நிறுவல்
  • a, b, c ஐப் பக்கங்களாகக் கொண்ட முக்கோணம் ABC என்க. மேலும் வார்ப்புரு:Nowrap
  • a and b க்கு இடையே செங்கோணம் கொண்ட ஒரு இரண்டாவது முக்கோணத்தை வரைந்தால் பித்தாகரசு தேற்றத்தின்படி, அதன் செம்பக்கத்தின் நீளம் வார்ப்புரு:Radic ஆகும்.
  • இது முதல் முக்கோணத்தின் பக்கமான c க்குச் சமமாகும்.
  • இரு முக்கோணங்களின் பக்கங்கள் சமமாக இருப்பதால் அவையிரண்டும் சர்வசமமாகும்.
  • இரு சர்வசம முக்கோணங்களில் அவற்றின் ஒத்த கோணங்கள் சமமாக இருக்கும் என்பதால், இரண்டாம் முக்கோணத்தில் உள்ளது போலவே முதல் முக்கோணத்திலும் a , b பக்கங்களுக்கு இடையேயுள்ள கோணமும் செங்கோணமாகும். அதாவது, முதல் முக்கோணம் ஒரு செங்கோண முக்கோணம்.

பித்தகோரசு தேற்றத்தின் மறுதலையின் இந் நிறுவலில் பித்தகோரசு தேற்றம் பயன்படுத்தப்பட்டுள்ளது. எனினும் பித்தகோரசு தேற்றத்தைப் பயன்படுத்தாமலும் அதன் மறுதலையை நிறுவலாம்.[10][11]

மறுதலையின் கிளைமுடிவு

பித்தகோரசுத் தேற்றத்தின் மறுதலையின் கிளைமுடிவுவானது, எடுத்துக்கொள்ளப்படும் முக்கோணம் விரிகோண முக்கோணமா, குறுங்கோண முக்கோணமா அல்லது செங்கோண முக்கோணமா என வகைப்படுத்தப் பயன்படுகிறது.

எடுத்துக்கொள்ளப்பட்ட முக்கோணத்தின் பக்கங்கள் a , b , c . இவற்றில் மிக நீளமான பக்கம் c எனில், வார்ப்புரு:Nowrap கீழ்க்காணும் கூற்றுகள் முக்கோணத்தின் வகையைத் தருகின்றன:[12]

விளைவுகளும் பயன்பாடுகளும்

பித்தகோரசின் மும்மை

வார்ப்புரு:முதன்மை பைதகரசின் விதியை திருப்தி செய்யும் வகையில் செங்கோண முக்கோணமொன்றின் பக்கங்களின் நீளத்தொடர்புகள் பித்தகோரசின் மும்மை எனப்படும். முழு எண்களினாலான முதலாவது பித்தாகோரசு மும்மை 3, 4, 5 என்பதாகும். இதன் மடங்குகளும் அதாவது (6,8,10) , (9,12,15), (30,40,50) என்பனவும் முழு எண்ணினாலான பித்தகோரசின் மும்மையைத் தரும். இது தவிர (8,15,17), (7,24,25).... என்றவாறு பித்தகோரசின் முழு எண் மும்மைகளை அமைக்கலாம்.

பித்தகோரசின் முழு எண் மும்மை துணியப்படும் முறை:

  • ஒரு எண் இரட்டை எண்ணாயின் அதன் அரைவாசியின் வர்க்கத்துடன் ஒன்றைக் கூட்டிய, கழித்த எண்கள் அடுத்தடுத்த எண்களாக அமையும்.

எடுத்துக்காட்டு: எண் 6 எனின் அதன் அரைவாசி 3. மூன்றின் வர்க்கம் 9. ஆகவே பித்தகோரசின் முழு எண் மும்மையின் அடுத்த எண்கள் 8, 10. இங்கு பித்தகோரசின் முழு எண் மும்மை (6,8,10)

  • ஒரு எண் ஒற்றை எண்ணாயின் அது வர்க்கிக்கப்படும். வரும் பெறுமானத்தின் (அதுவும் ஒற்றை எண்) அரைவாசியில் ஒன்று குறைந்த தொகையும் ஒன்று கூடிய தொகையும் அடுத்தடுத்த எண்களாக அமையும்.

எடுத்துக்காட்டு: எண் 7 எனின் அதன் வர்க்கம் 49. அரைவாசி 25 உம் 24 உம் ஆகும். இங்கு பித்தகோரசின் முழு எண் மும்மை (7,24,25)

சிக்கல் எண்கள்

சிக்கலெண் z இன் தனிமதிப்பானது, z க்கும் ஆதிப்புள்ளிக்கும் இடைப்பட்ட தூரம் r ஆகும்
z=x+iy, என்றதொரு சிக்கலெண்ணின் தனி மதிப்பு அல்லது மட்டு மதிப்பு:
r=|z|=x2+y2.

எனவே r, x , y மூன்றும் பித்தகோரசு தேற்றத்தின் முடிவை நிறைவு செய்கின்றன:

r2=x2+y2.

r நேர் எண்ணாகவோ அல்லது பூச்சியமாகவோ அமையலாம்; x , y நேர் அல்லது எதிர் எண்களாக இருக்கலாம்.

சிக்கலெண் தளத்தில், z க்கும் ஆதிப்புள்ளி O க்கும் இடைப்பட்ட தூரம் r ஆகும். இதனைப் பொதுமைப்படுத்தி சிக்கலெண் தளத்திலமையும் இரு புள்ளிகளுக்கிடைப்பட்ட தூரத்தைக் காணலாம்.

z1 , z2 இரு சிக்கலெண் புள்ளிகள் எனில் அவற்றுக்கிடையே உள்ள தூரம்:

|z1z2|=(x1x2)2+(y1y2)2,

இதுவும் பித்தாகரசு தேற்ற முடிவாகிறது:

|z1z2|2=(x1x2)2+(y1y2)2.

வேறுபட்ட ஆள்கூற்று முறைமைகளில் யூக்ளிடின் தொலைவு

கார்ட்டீசியன் ஆள்கூற்று முறைமை

கார்ட்டீசியன் ஆள்கூற்று முறைமையில் இரு புள்ளிகளுக்கிடையேயுள்ள தொலைவைக் கணக்கிட பயன்படும் வாய்ப்பாடு பித்தகோரசு தேற்றத்தைப் பயன்படுத்திப் பெறப்படுகிறது[13].

கார்ட்டீசியன் தளத்திலமையும் வார்ப்புரு:Nowrap வார்ப்புரு:Nowrap ஆகிய இருபுள்ளிகளுக்கிடையேயுள்ள தொலைவு (யூக்ளிடிய தொலைவு) காணும் வாய்ப்பாடு:

(x1x2)2+(y1y2)2.

பொதுவாக, யூக்ளிடிய n-வெளியில் அமையும் இரு புள்ளிகளுக்கு (A=(a1,a2,,an), B=(b1,b2,,bn)) இடையேயுள்ள யூக்ளிடிய தொலைவானது பொதுமைப்படுத்தப்பட்ட பித்தகோரசு தேற்றத்தின் மூலம் பின்வருமாறு வரையறுக்கப்படுகிறது:

(a1b1)2+(a2b2)2++(anbn)2=i=1n(aibi)2.

வளைகோட்டு ஆள்கூறுகள்

வாள்முனை ஆள்கூற்று முறைமைக்கும் கார்ட்டீசிய ஆள்கூற்று முறைமைக்கும் இடையே உள்ள உறவை விளக்கும் படம்.

கார்ட்டீசியன் ஆள்கூற்று முறைமைக்குப் பதில் போலார் ஆள்கூறுகள் அல்லது மேலும் பொதுவான வளைகோட்டு ஆள்கூறுகள் பயன்படுத்தப்படும்போதும், யூக்ளிடிய தொலைவு காணும் வாய்ப்பாட்டினைப் பித்தகோரசு தேற்றத்தின் மூலம் பெறமுடியும். இதற்கு கார்ட்டீசியன் ஆள்கூறுகளையும் வளைகோட்டு ஆள்கூறுகளையும் இணைக்கும் தொடர்புச் சமன்பாடுகள் பயன்படுத்தப்படுகின்றன.

எடுத்துக்காட்டாக, இருபரிமாணத் தளத்திலமைந்த ஒரு புள்ளியின் போலார் ஆள்கூறுகள் வார்ப்புரு:Nowrap கார்ட்டிசியன் ஆள்கூறுகள் வார்ப்புரு:Nowrap எனில்:

x=rcosθ, y=rsinθ.

வார்ப்புரு:Nowrap வார்ப்புரு:Nowrap என்ற இரு புள்ளிகளுக்கு இடையேயுள்ள தொலைவு s பின்வருமாறு கார்ட்டீசியன் தொலைவு வாய்ப்பாட்டிலிருந்து போலார் ஆள்கூறுகளில் பெறப்படுகிறது:

s2=(x1x2)2+(y1y2)2=(r1cosθ1r2cosθ2)2+(r1sinθ1r2sinθ2)2.
s2=r12+r222r1r2(cosθ1cosθ2+sinθ1sinθ2)=r12+r222r1r2cos(θ1θ2)=r12+r222r1r2cosΔθ,

இந்த வாய்ப்பாடு கொசைன்களின் விதியாகும். இது சில சமயங்களில் ’பொதுமைப்படுத்தப்பட்ட பித்தகோரசு தேற்றம்’ எனவும் அழைக்கப்படுகிறது.[14]

எடுத்துக்கொள்ளப்பட்ட இரு புள்ளிகளின் ஆரைத் திசையன்கள் ஒன்றுக்கொன்று செங்குத்தாக இருக்குமானால் வார்ப்புரு:Nowrap ஆகும். இந்நிலையில் மேலேயுள்ள தொலைவு வாய்ப்பாடு s2=r12+r22. என்றாகி விடுகிறது. இதனால் செங்கோண முக்கோணங்களுக்குப் பொருந்தும் பித்தகோரசு தேற்றத்தை, எந்தவொரு முக்கோணத்துக்கும் பொருந்துகின்ற கொசைன்களின் விதியின் சிறப்புவகையாகக் கொள்ளலாம்.

பித்தகோரசின் முக்கோணவியல் முற்றொருமை

வார்ப்புரு:Main

கோணம் θ இன் சைன், கோசைன்களைக் காட்டும் வடிவொத்த முக்கோணங்கள்

ஒரு செங்கோண முக்கோணத்தின் பக்கங்கள் a, b, c (செம்பக்கம்); பக்கம் aக்கும் செம்பக்கத்துக்கும் இடைப்பட்ட கோணம் θ எனில்:

sinθ=bc,cosθ=ac.
cos2θ+sin2θ=a2+b2c2=1

இதில் c2=a2+b2 என்ற பித்தகோரசு தேற்ற முடிவு பயன்படுத்தப்பட்டுள்ளது. சைனுக்கும் கொசைனுக்கும் இடையேயான இந்தத் தொடர்பு அடிப்படையான பித்தகோரசின் முக்கோணவியல் முற்றொருமை என அழைக்கப்படுகிறது.[15]

குறுக்குப் பெருக்கத்துடன் தொடர்பு

a x b இன் வடிவவியல் விளக்கப்படம்.

பித்தகோரசு தேற்றம், குறுக்குப் பெருக்கத்தையும் புள்ளிப் பெருக்கத்தையும் தொடர்புபடுத்துகிறது:[16]

𝐚×𝐛2+(𝐚𝐛)2=𝐚2𝐛2.
நிறுவல்

திசையன் இயற்கணிதத்தில் குறுக்குப் பெருக்கம், புள்ளிப் பெருக்கம் இரண்டின் வரையறை:

𝐚×𝐛=ab𝐧sinθ𝐚𝐛=abcosθ, (a , b திசையன்களுக்கு செங்குத்தான அலகு திசையன் n)
𝐚×𝐛2+(𝐚𝐛)2

இதில் மேலுள்ள வரையறைகளைப் பயன்படுத்த,

=𝐚2𝐛2(𝐧)2sin2θ+𝐚2𝐛2cos2θ ((𝐧)2=1)
=𝐚2𝐛2(sin2θ+cos2θ) (பித்தாகரசு முக்கோணவியல் முற்றொருமையின்படி, sin2θ+cos2θ=1)
=𝐚2𝐛2.

மேலே தரப்பட்ட தொடர்பினை சற்று மாற்றியமைத்து குறுக்குப் பெருக்கத்தைக் கீழுள்ளவாறு வரையறையறுக்கலாம்:

𝐚×𝐛2=𝐚2𝐛2(𝐚𝐛)2.

பொதுமைப்படுத்தல்

வெவ்வேறு வடிவொத்த வடிவங்கள்

செங்கோண முக்கோணத்தின் மூன்று பக்கங்களின் மீதும் சதுரங்களுக்குப் பதிலாக வெவ்வேறு மூன்று வடிவொத்த வடிவங்களை வரைந்து பித்தகோரசு தேற்றத்தினைப் பொதுமைப்படுத்தியவர் கிமு ஐந்தாம் நூற்றாண்டைச் சேர்ந்த கிரேக்கக் கணிதவியலார் இப்போகிரசு (சியோசு) ஆவார்.[17] இதே கருத்து யூக்ளிடின் ’கூறுகள்’ புத்தகத்திலும் உள்ளது (புத்தகம் VI, முன்வைப்பு VI 31):[18]

யூக்ளிடின் ’கூறுகள்’ புத்தகம் VI, முன்வைப்பு VI 31:

ஒரு செங்கோண முக்கோணத்தின் பக்கங்களின் மீது வடிவொத்த வடிவங்கள் வரையப்பட்டால், இரு சிறிய பக்கங்களின் மீது வரையப்பட்ட வடிவங்களின் பரப்பளவுகளின் கூடுதல் பெரிய பக்கத்தின் மீது வரையப்பட்ட வடிவத்தின் பரப்பளவுக்குச் சமமாக இருக்கும்.

தேற்றத்தின் பொதுமைப்படுத்தல் முக்கோணத்தின் மூன்று பக்கங்கள் ஒவ்வொன்றும் அவற்றின் மீது வரையப்படும் வடிவத்தின் ஒரு பக்கமாக உள்ளது என்ற கூற்றின் அடிப்படையில் பித்தகோரசு தேற்றம் இவ்வாறு பொதுமைப்படுத்தப்படுகிறது.[19]

செங்கோண முக்கோணத்தின் பக்கங்களின் மீது வரையப்படும் குவிவுப் பல்கோணங்களுக்கு மட்டும் இத்தேற்றத்தினை யூக்ளிடின் நிறுவல் தருகிறது என்றாலும், தேற்றமானது குழிவுப் பல்கோணங்களுக்கும், வளைகோட்டு வரம்புகளுடைய வடிவங்களுக்குங்கூடப் (அவ் வடிவங்களின் ஒரு வரம்பு முக்கோணத்தின் ஒரு பக்கமாக இருக்கும்பட்சத்தில்) பொருந்தும்.[19]

கொசைன்களின் விதி

போலார் ஆள்கூறுகளில், வார்ப்புரு:Nowrap, வார்ப்புரு:Nowrap என்ற இரு புள்ளிகளிக்கு இடைப்பட்ட தொலைவு s ஐக் கொசைகளின் விதி தருகிறது Δθ = θ1−θ2.

வார்ப்புரு:முதன்மை பித்தகோரசு தேற்றம், ஒரு முக்கோணத்தின் பக்கங்களுக்கு இடையேயுள்ள தொடர்பைத் தரும் கொசைன்களின் விதியின் சிறப்புவகையாகும்:[20]

கொசைன்களின் விதி
a2+b22abcosθ=c2,
a , b பக்கங்களுக்கு இடைப்பட்ட கோணம் θ.
θ=90o
cosθ=90o=0

எனவே இந்நிலையில் இவ்விதி பித்தகோரசு தேற்றமாகிறது.

மேற்கோள்களும் அடிக்குறிப்புகளும்

வார்ப்புரு:Reflist

உசாத்துணை

வெளி இணைப்புகள்

வார்ப்புரு:Commons category

வார்ப்புரு:Authority control

  1. Heath, Vol I, p. 144.
  2. Posamentier, Alfred. The Pythagorean Theorem: The Story of Its Power and Beauty, p. 23 (Prometheus Books 2010).
  3. Benson, Donald. The Moment of Proof : Mathematical Epiphanies, pp. 172–173 (Oxford University Press, 1999).
  4. Elements 1.47 by Euclid, retrieved 19 December 2006
  5. வார்ப்புரு:Cite journal
  6. வார்ப்புரு:Cite web
  7. வார்ப்புரு:Cite journal
  8. வார்ப்புரு:Cite book
  9. Euclid's Elements, Book I, Proposition 48 From D.E. Joyce's web page at Clark University
  10. Casey, Stephen, "The converse of the theorem of Pythagoras", Mathematical Gazette 92, July 2008, 309–313.
  11. Mitchell, Douglas W., "Feedback on 92.47", Mathematical Gazette 93, March 2009, 156.
  12. வார்ப்புரு:Cite book
  13. வார்ப்புரு:Cite book
  14. வார்ப்புரு:Cite book, Exercises, page 116
  15. வார்ப்புரு:Cite book
  16. வார்ப்புரு:Cite journal
  17. Heath, T. L., A History of Greek Mathematics, Oxford University Press, 1921; reprinted by Dover, 1981.
  18. Euclid's Elements: Book VI, Proposition VI 31: "In right-angled triangles the figure on the side subtending the right angle is equal to the similar and similarly described figures on the sides containing the right angle."
  19. 19.0 19.1 Putz, John F. and Sipka, Timothy A. "On generalizing the Pythagorean theorem", The College Mathematics Journal 34 (4), September 2003, pp. 291–295.
  20. வார்ப்புரு:Cite book
"https://ta.wiki.beta.math.wmflabs.org/w/index.php?title=பித்தேகோரசு_தேற்றம்&oldid=275" இலிருந்து மீள்விக்கப்பட்டது