வடிவொப்புமை (வடிவவியல்)

testwiki இலிருந்து
imported>BalajijagadeshBot பயனரால் செய்யப்பட்ட 07:56, 1 சூன் 2019 அன்றிருந்தவாரான திருத்தம் (பராமரிப்பு using AWB)
(வேறுபாடு) ← பழைய திருத்தம் | ஆக அண்மைய திருத்தம் (வேறுபாடு) | புதிய திருத்தம் → (வேறுபாடு)
Jump to navigation Jump to search
ஒரே நிறத்தில் உள்ள வடிவங்கள் வடிவொத்தவை.

இரு வடிவவியல் உருவங்களின் வடிவங்கள் ஒரே மாதிரியாக அமைந்திருந்தால் அவை வடிவொத்தவை(similar) என அழைக்கப்படுகின்றன. மேலும் துல்லியமாகக் கூறுவதென்றால், இரு வடிவங்கள் வடிவொத்தவையெனில், அவற்றுள் ஏதாவதொரு வடிவத்தை, குறிப்பிட்ட அளவுதிட்டத்தின்கீழ் சுருக்குவதாலோ அல்லது பெருக்குவதாலோ அதை மற்றொரு வடிவத்திற்கு சர்வசமமானதாக மாற்றி அமைக்க முடியும். அதாவது ஒன்றை மற்றொன்றோடு முழுவதுமாகப் பொருந்த வைக்க முடியும்.

வடிவொத்த இரு பலகோணங்களின் ஒத்த பக்க அளவுகள் விகிதசமமாகவும், ஒத்த கோண அளவுகள் சமமாகவும் இருக்கும். வடிவொத்த வடிவங்களில், ஒன்றிலிருந்து மற்றொன்றை, அனைத்துத் திசைகளிலும் ஒரேயளவில் சீராக நீட்டிப்பதாலோ, சுழற்சியாலோ அல்லது பிரதிபலிப்பு மூலமாகவோ பெற இயலும். (அ-து) இரண்டும் ஒரே வடிவில் இருக்கும் அல்லது ஒன்று மற்றொன்றின் கண்ணாடிப் பிரதிபிம்ப வடிவில் இருக்கும். எடுத்துக்காட்டாக, அனைத்து வட்டங்களும் வடிவொத்தவை; அனைத்து சதுரங்களும் வடிவொத்தவை; அனைத்து சமபக்க முக்கோணங்களும் வடிவொத்தவை. ஆனால், அனைத்து நீள்வட்டங்களும் வடிவொத்தவை அல்ல; அனைத்து அதிபரவளையங்களும் வடிவொத்தவை அல்ல. ஒரு முக்கோணத்தின் இரு கோணங்கள் மற்றொரு முக்கோணத்தின் இரு கோணங்களுக்குச் சமமாக இருந்தால் அவ்விரு முக்கோணங்களும் வடிவொத்தவையாக அமையும்.

இக்கட்டுரையில் அளவுதிட்டக் காரணியை 1 எனக்கொண்டு, சர்வசம வடிவங்களும் வடிவொத்தவையாக எடுத்துக் கொள்ளப்படுகின்றன. ஆனால் சில பள்ளிப்பாடப் புத்தகங்களில் வடிவொத்த வடிவங்களின் பக்க அளவுகள் சமமாக இருக்காது என்ற கருத்தை வலியுறுத்த சர்வசமமான வடிவங்களை வடிவொத்த வடிவங்களாகக் கருதுவதில்லை.

வடிவொத்த முக்கோணங்கள்

முக்கோணங்களின் வடிவொப்புமையைப் புரிந்து கொள்ள, இரண்டு வேறுபட்ட கருத்துருக்களைப் பற்றி அறிதல் வேண்டும். ஒன்று வடிவம், மற்றது அளவுதிட்டக் காரணி.

குறிப்பாக, வடிவொத்த முக்கோணங்கள் ஒரே மாதிரியான வடிவங்கள் கொண்டவை; அளவுதிட்டம் நீங்கலாக அவற்றைப் பார்த்தால் அவை முற்றும் ஒத்தவையாக இருக்கும். முக்கோணத்தின் வடிவமைப்பு அதன் கோணங்களால் தீர்மானிக்கப்படுகிறது. எனவே இரு முக்கோணங்கள் வடிவொத்தவை என்றால் அவற்றின் கோணங்களுக்கிடையே கோண அளவுகளை சமமாக்கும் ஒரு தொடர்புள்ளது..

பின்வரும் இரு நிபந்தனைகளுள் ஏதாவது ஒன்று பூர்த்தி செய்யப்பட்டால், ABC மற்றும் DEF ஆகிய இரு முக்கோணங்களும் வடிவொத்தவையாகும்:

ABDE=BCEF=ACDF.
இது ஒரு முக்கோணம் மற்றதன் உருப்பெருக்கம் என்பதற்குச் சமமாகும்.
  • BAC = EDF
ABC = DEF
ACB = DFE (இதிலிருந்து முக்கோணங்களின் மூன்றாவது கோணங்களும் சமமாக இருக்குமென அறிந்து கொள்ளலாம்.)

முக்கோணங்கள் ABC மற்றும் DEF இரண்டும் வடிவொத்தவை என்பதை:

ABCDEF என எழுதலாம்.

மூன்று நிலைக்கோடுகள்: lll இந்தக் குறியீட்டையும் முக்கோண வடிவொப்புமைக்குப் பயன்படுத்தலாம்.

ABC lll DEF

கோண/பக்க வடிவொப்புமைகள்

இரு முக்கோணங்கள் வடிவொத்தவை என்பதை நிறுவுவதற்குப் பின்வரும் மூன்று கட்டளை விதிகளில் ஏதாவது ஒன்று போதுமானது.

  • AA - இரு முக்கோணங்களின் இரண்டு சோடி ஒத்த கோணங்கள் சமமெனில் அம்முக்கோணங்கள் வடிவொத்தவை.
இரு சோடி ஒத்த கோணங்கள் சமம் என்றாலே, மூன்றாவது சோடி ஒத்த கோணங்களும் சமமாகத்தான் இருக்கும், என்வே சிலசமயங்களில் இவ்விதியானது, AAA எனவும் குறிப்பிடப்படுகிறது.
  • SSS (மூன்று பக்கங்களும் விகிதசமம்) - ஒத்த பக்கங்களின் விகிதங்கள் (மூன்று சோடிகளுக்கும்) சமம்.
  • SAS (இரு பக்கவிகிதம், இடைப்பட்ட கோணம்) - ஒரு முக்கோணத்தின் இரு பக்கங்கள் மற்றொரு முக்கோணத்தின் ஒத்த இரு பக்கங்களுக்கு விகிதசமமாகவும் இரு முக்கோணங்களிலும் அப்பக்கங்களுக்கு இடைப்பட்ட கோணங்கள் சமமாகவும் இருந்தால் அவ்விரு முக்கோணங்களும் வடிவொத்தவை.

பிற வடிவொத்த பலகோணங்கள்

வடிவொப்புமை என்ற கருத்து மூன்றுக்கும் அதிகமான பக்கங்களையுடைய பலகோணங்களுக்கும் நீட்டிக்கப்பட்டுள்ளது.

இரு பலகோணங்கள் வடிவொத்தவை எனில்:

  • ஒரே வரிசைப்படி எடுத்துக் கொள்ளப்படும் அவற்றின் பக்கங்கள் விகிதசமமானவை;
  • ஒரே வரிசைப்படி எடுத்துக் கொள்ளப்படும் அவற்றின் கோணங்களின் அளவுகள் சமமாக இருக்கும்.

எனினும் முக்கோணத்தைத் தவிர:

  • பிற பலகோணங்களின் வடிவொப்புமையை நிறுவ பக்க நீளங்களின் விகிதசமம் மட்டும் போதுமானதல்ல. அவ்வாறு போதுமானதாக இருந்தால் எல்லா சாய்சதுரங்களும் வடிவொத்தவையாகிவிடும்.
  • ஒரே வரிசையில் எடுத்துக் கொள்ளப்பட்ட கோணங்கள் சமமாக இருத்தலும் இரு பலகோணங்கள் வடிவொத்தவை என்பதை நிறுவ போதுமானதல்ல. அவ்வாறு போதுமென்றால் அனைத்து செவ்வகங்களும் வடிவொத்ததாகிவிடும்.

வடிவொத்த வளைவரைகள்

பலவகை வளவரைகளில் அவ்வகையைச் சார்ந்த அனைத்தும் வடிவொத்தவையாக அமையும்.

அத்தகைய வளைவரைகள்:

வெளி இணப்புகள்