குவிவுக் கணம்

testwiki இலிருந்து
imported>InternetArchiveBot பயனரால் செய்யப்பட்ட 04:47, 20 திசம்பர் 2023 அன்றிருந்தவாரான திருத்தம் (Bluelink 1 book for விக்கிப்பீடியா:மெய்யறிதன்மை (20231219)) #IABot (v2.0.9.5) (GreenC bot)
(வேறுபாடு) ← பழைய திருத்தம் | ஆக அண்மைய திருத்தம் (வேறுபாடு) | புதிய திருத்தம் → (வேறுபாடு)
Jump to navigation Jump to search
குவிவுக் கணம்.
குவிவற்ற கணம்.

யூக்ளிடிய வெளியில் ஒரு பொருள் குவிவு (convex) ஆக இருக்கவேண்டுமாயின் அப்பொருளுக்குள் உள்ள ஒவ்வொரு சோடிப் புள்ளிகளுக்கும், அப்புள்ளிகளை இணைக்கும் கோட்டின் மீதமையும் எந்தவொரு புள்ளியும் அப்பொருளுக்குள்ளேயே அமைய வேண்டும். எடுத்துக்காட்டாக ஒரு திடக் கனசதுரம் குவிவானது; பிறை வடிவம் குவிவானது இல்லை. பிற வெளிகளுக்கும் இக்கருத்தைப் பொதுமைப்படுத்தலாம்.

திசையன் வெளியில்

ஒரு சார்பின் வரைபடத்திற்கு (நீலம்) மேற்புறமுள்ள அதன் வெளிவரைபடம் (பச்சை) குவிவுக் கணமாக இருந்தால், இருந்தால் மட்டுமே, அச்சார்பு ஒரு குவிவுச் சார்பாக இருக்கும்.

S என்பது மெய்யெண்களின் மீதானதொரு திசையன் வெளி. இவ்வெளி யூக்ளிய தளங்களையும் உள்ளடக்கியது.

S இல் அமையும் ஒரு கணம் C , குவிவுக் கணம் (convex set) இருக்க வேண்டுமானால் C இல் உள்ள அனைத்து x , y மற்றும் [0,1] இடைவெளியில் அமையும் அனைத்து t க்கும்

(1 − t ) x + t y புள்ளியானது C இல் இருக்க வேண்டும்.

அதாவது, x , y புள்ளிகளை இணைக்கும் கோடு C க்குள் அமையும்.

மெய்யெண் கணம் R இன் குவிவுக் கணங்கள் அதன் இடைவெளிகளாகும். சீரான பலகோணங்கள், திட முக்கோணங்கள், திட முக்கோணங்களின் வெட்டுப்பகுதிகள் ஆகியவை யூக்ளிடிய தளத்தின் குவிவு உட்கணங்களுக்கு எடுத்துக்காட்டுகள்.

பண்புகள்

S ஒரு குவிவுக் கணம்; u1,u2,,ur S இன் உறுப்புகள். λ1,λ2,,λr எதிரிலா எண்கள் மற்றும் λ1+λ2++λr=1 எனில்,

k=1rλkuk எனும் திசையன் S இல் அமையும். இத்தகைய திசையன் u1,u2,,ur ஆகியவற்றின் குவிவுச் சேர்வு எனப்படும்.

வெட்டுக்களும் ஒன்றிணைப்புகளும்

ஒரு திசையன் வெளியின் குவிவு உட்கணங்களின் தொகுப்பிற்குப் பின்வரும் பண்புகள் உண்டு:[1][2]

  1. வெற்றுக்கணமும் முழு திசையன் வெளியும் குவிவுக் கணங்கள்.
  2. குவிவுக் கணங்களின் வெட்டுக்கணம் குவிவுக் கணம்.
  3. குறையாத் தொடர்முறையாகவுள்ள குவிவு உட்கணங்களின் ஒன்றிப்புக் கணம் குவிவுக் கணம்.

மூன்றாவது பண்பான குறையாத் தொடர்முறையாகவுள்ள குவிவு உட்கணங்களின் ஒன்றிப்பிற்கு உட்பொதிவுள்ள கணங்களாக இருக்க வேண்டியது முக்கியமானது. இரு குவிவுக் கணங்களின் ஒன்றிப்புக் கணம் குவிவுக் கணம் அல்ல.

மேற்கோள்கள்

வார்ப்புரு:Reflist

வெளி இணைப்புகள்

  1. Soltan, Valeriu, Introduction to the Axiomatic Theory of Convexity, Ştiinţa, Chişinău, 1984 (in Russian).
  2. வார்ப்புரு:Cite book
"https://ta.wiki.beta.math.wmflabs.org/w/index.php?title=குவிவுக்_கணம்&oldid=906" இலிருந்து மீள்விக்கப்பட்டது