இராமானுசன் கூட்டு
- இக்கட்டுரை இராமானுசன் கூட்டுகை (Ramanujan summation) என்பது பற்றியது அன்று
கணிதத்தின் ஒரு பிரிவான எண்கோட்பாட்டியலில், இராமானுசன் கூட்டு (Ramanujan's sum), என்பதைப் பொதுவாக cq(n), எனக்குறிப்பது வழக்கம். இது நேர்ம எண் மாறிகள் q, n ஆகியவற்றால் ஆன சார்பியம் (சார்பு). இதனைக் கீழ்க்காணும் சூத்திரத்தால் குறிக்கலாம்
மேலுள்ளதில் (a, q) = 1 என்னும் குறியீடு என்ன குறிக்கின்றதென்றால், a என்பது q என்னும் எண்ணோடு ஒப்பீட்டு பகா எண்ணின் (co-prime) மதிப்புகளை மட்டுமே கொள்ளும் என்று பொருள்.
சீனிவாச இராமானுசன் இந்த கூட்டு வாய்பாட்டை 1918 ஆய்வுத்தாளில் அளித்தார்[1] இக் கூட்டு வாய்பாட்டினை வினோகிராடோவ் தேற்றத்தை(Vinogradov's theorem)நிறுவுவதில் பயன்படுத்தியுள்ளார்கள். இத்தேற்றம் மிகப்பெரிய ஒற்றைப்படை எண்கள் ஒவ்வொன்றும் மூன்று பகா எண்களின் கூட்டுத்தொகை என கூறுகின்றது[2]
இராமானுசன் கூட்டு அட்டவணை
| n | |||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | ||
| s | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 2 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | |
| 3 | −1 | −1 | 2 | −1 | −1 | 2 | −1 | −1 | 2 | −1 | −1 | 2 | −1 | −1 | 2 | −1 | −1 | 2 | −1 | −1 | 2 | −1 | −1 | 2 | −1 | −1 | 2 | −1 | −1 | 2 | |
| 4 | 0 | −2 | 0 | 2 | 0 | −2 | 0 | 2 | 0 | −2 | 0 | −2 | 0 | 2 | 0 | −2 | 0 | 2 | 0 | −2 | 0 | −2 | 0 | 2 | 0 | −2 | 0 | 2 | 0 | −2 | |
| 5 | −1 | −1 | −1 | −1 | 4 | −1 | −1 | −1 | −1 | 4 | −1 | −1 | −1 | −1 | 4 | −1 | −1 | −1 | −1 | 4 | −1 | −1 | −1 | −1 | 4 | −1 | −1 | −1 | −1 | 4 | |
| 6 | 1 | −1 | −2 | −1 | 1 | 2 | 1 | −1 | −2 | −1 | 1 | 2 | 1 | −1 | −2 | −1 | 1 | 2 | 1 | −1 | −2 | −1 | 1 | 2 | 1 | −1 | −2 | −1 | 1 | 2 | |
| 7 | −1 | −1 | −1 | −1 | −1 | −1 | 6 | −1 | −1 | −1 | −1 | −1 | −1 | 6 | −1 | −1 | −1 | −1 | −1 | −1 | 6 | −1 | −1 | −1 | −1 | −1 | −1 | 6 | −1 | −1 | |
| 8 | 0 | 0 | 0 | −4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | −4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | −4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | −4 | 0 | 0 | |
| 9 | 0 | 0 | −3 | 0 | 0 | −3 | 0 | 0 | 6 | 0 | 0 | −3 | 0 | 0 | −3 | 0 | 0 | 6 | 0 | 0 | −3 | 0 | 0 | −3 | 0 | 0 | 6 | 0 | 0 | −3 | |
| 10 | 1 | −1 | 1 | −1 | −4 | −1 | 1 | −1 | 1 | 4 | 1 | −1 | 1 | −1 | −4 | −1 | 1 | −1 | 1 | 4 | 1 | −1 | 1 | −1 | −4 | −1 | 1 | −1 | 1 | 4 | |
| 11 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | 10 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | 10 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | |
| 12 | 0 | 2 | 0 | −2 | 0 | −4 | 0 | −2 | 0 | 2 | 0 | 4 | 0 | 2 | 0 | −2 | 0 | −4 | 0 | −2 | 0 | 2 | 0 | 4 | 0 | 2 | 0 | −2 | 0 | −4 | |
| 13 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | 12 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | 12 | −1 | −1 | −1 | −1 | |
| 14 | 1 | −1 | 1 | −1 | 1 | −1 | −6 | −1 | 1 | −1 | 1 | −1 | 1 | 6 | 1 | −1 | 1 | −1 | 1 | −1 | −6 | −1 | 1 | −1 | 1 | −1 | 1 | 6 | 1 | −1 | |
| 15 | 1 | 1 | −2 | 1 | −4 | −2 | 1 | 1 | −2 | −4 | 1 | −2 | 1 | 1 | 8 | 1 | 1 | −2 | 1 | −4 | −2 | 1 | 1 | −2 | −4 | 1 | −2 | 1 | 1 | 8 | |
| 16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −8 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 17 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | 16 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | |
| 18 | 0 | 0 | 3 | 0 | 0 | −3 | 0 | 0 | −6 | 0 | 0 | −3 | 0 | 0 | 3 | 0 | 0 | 6 | 0 | 0 | 3 | 0 | 0 | −3 | 0 | 0 | −6 | 0 | 0 | −3 | |
| 19 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | 18 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | |
| 20 | 0 | 2 | 0 | −2 | 0 | 2 | 0 | −2 | 0 | −8 | 0 | −2 | 0 | 2 | 0 | −2 | 0 | 2 | 0 | 8 | 0 | 2 | 0 | −2 | 0 | 2 | 0 | −2 | 0 | −8 | |
| 21 | 1 | 1 | −2 | 1 | 1 | −2 | −6 | 1 | −2 | 1 | 1 | −2 | 1 | −6 | −2 | 1 | 1 | −2 | 1 | 1 | 12 | 1 | 1 | −2 | 1 | 1 | −2 | −6 | 1 | −2 | |
| 22 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | −10 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | 10 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | |
| 23 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | 22 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | |
| 24 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | −4 | 0 | 0 | 0 | −8 | 0 | 0 | 0 | −4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 4 | 0 | 0 | |
| 25 | 0 | 0 | 0 | 0 | −5 | 0 | 0 | 0 | 0 | −5 | 0 | 0 | 0 | 0 | −5 | 0 | 0 | 0 | 0 | −5 | 0 | 0 | 0 | 0 | 20 | 0 | 0 | 0 | 0 | −5 | |
| 26 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | −12 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 | −1 | 12 | 1 | −1 | 1 | −1 | |
| 27 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | |
| 28 | 0 | 2 | 0 | −2 | 0 | 2 | 0 | −2 | 0 | 2 | 0 | −2 | 0 | −12 | 0 | −2 | 0 | 2 | 0 | −2 | 0 | 2 | 0 | −2 | 0 | 2 | 0 | 12 | 0 | 2 | |
| 29 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | 28 | −1 | |
| 30 | −1 | 1 | 2 | 1 | 4 | −2 | −1 | 1 | 2 | −4 | −1 | −2 | −1 | 1 | −8 | 1 | −1 | −2 | −1 | −4 | 2 | 1 | −1 | −2 | 4 | 1 | 2 | 1 | −1 | 8 | |
அடிக்குறிப்புகள்
உசாத்துணையும் நூற்பட்டியலும்
- வார்ப்புரு:Citation Section A.7.
- வார்ப்புரு:Citation (pp. 179–199 of his Collected Papers)
- வார்ப்புரு:Citation (pp. 136–163 of his Collected Papers)
- ↑ Ramanujan, On Certain Trigonometric Sums ...
(Papers, p. 179). In a footnote cites pp. 360–370 of the Dirichlet-Dedekind Vorlesungen über Zahlentheorie, 4th ed.These sums are obviously of great interest, and a few of their properties have been discussed already. But, so far as I know, they have never been considered from the point of view which I adopt in this paper; and I believe that all the results which it contains are new.
- ↑ Nathanson, ch. 8