இரும்பு(II,III) ஆக்சைடு
இரும்பு(II,III) ஆக்சைடு (Iron(II,III) oxide) என்பது Fe3O4 என்ற மூலக்கூற்று வாய்ப்பாட்டால் விவரிக்கப்படும் ஒரு கனிம வேதியியல் சேர்மமாகும். இது இயற்கையில் மேக்னடைட்டு என்ற கனிமமாக இச்சேர்மம் தோன்றுகிறது. இயற்கையில் கிடைக்கும் பல இரும்பு ஆக்சைடுகளில் இதுவும் ஒன்றாகும். இரும்பு(II) ஆக்சைடு (FeO) மிகவும் அரிதானது. இரும்பு(III) ஆக்சைடு (Fe2O3) சேர்மமும் இயற்கையாகவே ஏமடைட்டு என்ற கனிமமாகக் கிடைக்கிறது. இரும்பு(II,III) ஆக்சைடில் Fe2+ மற்றும் Fe3+ அயனிகள் இரண்டும் உள்ளன. சில சமயங்களில் FeO ∙ Fe2O3 என்ற இயைபிலும் இது உருவாக்கப்படுகிறது. இந்த இரும்பு ஆக்சைடு ஒரு கருப்பு தூளாக ஆய்வகத்தில் காணப்படுகிறது. இது நிரந்தர காந்தத்தன்மையை வெளிப்படுத்துகிறது. இரும்பயல் காந்தவியல் பண்பைக் கொண்ட இரும்பு(II,III) ஆக்சைடு சில சமயங்களில் அயக்காந்தப் பண்பைக் கொண்டதென தவறாக விவரிக்கப்படுகிறது.[1] ஒரு கருப்பு நிறமியாகப் பயன்படுத்தப்படுவது இதன் மிக விரிவான பயன்பாடாகும். இந்த நோக்கத்திற்காக இது இயற்கையாகத் தோன்றும் கனிமத்திலிருந்து பிரித்தெடுக்கப்படுவதற்குப் பதிலாக ஒருங்கிணைக்கப்பட்டு தயாரிக்கப்படுகிறது. ஏனெனில் உற்பத்தி முறையால் துகள் அளவு மற்றும் வடிவம் போன்றவை மாறுபடும்.[2]
தயாரிப்பு
சூடான இரும்பு உலோகம் நீராவியுடன் சேர்ந்து வினைபுரியும் போது இரும்பு ஆக்சைடு மற்றும் ஐதரசன் வாயு போன்றவை உருவாகின்றன.
காற்றில்லா நிலைமைகளில் இரும்பு ஐதராக்சைடு (Fe(OH)2) நீரால் ஆக்சிசனேற்றப்பட்டு மேகனடைட்டு கனிமத்தையும் மூலக்கூற்று ஐதரசனையும் உருவாக்குகிறது. இந்த செயல்முறை சிக்கோர் வினை என்ற பெயர் வினையால் விவரிக்கப்படுகிறது:
படிக உருவம் கொண்ட மேக்னடைட்டு (Fe3O4) படிக உருவமற்ற இரும்பு ஐதராக்சைடை விட (Fe(OH)2) வெப்ப இயக்கவியல் ரீதியாக மிகவும் நிலையானது என்பதால் இச்செல்முறை செயல்படுகிறது. மேக்னடைட்டை ஒரு பெரோபாய்மமாக தயாரிக்கும் மாசார்ட்டு முறை ஆய்வகத்தில் தயாரிப்பதற்கேற்ப வசதியான முறையாகும். சோடியம் ஐதராக்சைடு முன்னிலையில் இரும்பு(II) குளோரைடு மற்றும் இரும்பு(III) குளோரைடுகளின் கலவை இவ்வினையில் பயன்படுத்தப்படுகிறது.[3]
சோடியத்தின் தொந்தரவான எச்சங்கள் இல்லாமல் மேக்னடைட்டு தயாரிப்பதற்கான மிகவும் திறமையான முறை, இரும்பு குளோரைடு கலவையுடன் அம்மோனியாவைப் பயன்படுத்தி இணை வீழ்படிவாக்கம் செய்யும் முறையாகும். முதலில் 0.1 மோலார் FeCl3·6H2O கரைசலையும் FeCl2·4H2O கரைசலையும் நிமிடத்திற்கு சுமார் 2000 சுற்றுகள் வேகத்தில் தீவிரமாகக் கலந்து கிளற வேண்டும். FeCl3:FeCl2 உப்புக் கரைசல்களின் மோலார் விகிதம் 2:1 என்ற அளவில் இருக்குமாறு பார்த்துக் கொள்ள வேண்டும். வினை கலவையை 70 ° செல்சியசு வெப்பநிலைக்கு சூடாக்க வேண்டும். கிளறும் வேகத்தை நிமிடத்திற்கு 7500 சுற்றுகளாக உயர்த்தி பின்னர் அமோனியாவை சேர்க்க வேண்டும். மேக்னடைட்டின் கருப்பு நிற நானோ துகள்கள் வீழ்படிவாக உடனடியாக உருவாகின்றன.[4]
இரண்டு தயாரிப்பு முறைகளிலும் வீழ்படிவாக்க வினையானது அமில இரும்பு அயனிகளிலிருந்து சிபினைல் இரும்பு ஆக்சைடு அமைப்புக்கு வேகாமாக மாற்றமடைவதை சார்ந்தே உள்ளது. இங்கு காரகாடித்தன்மைச் சுட்டெண் மதிப்பு 10 (pH 10) அல்லது அதற்கும் அதிகமாக உள்ளது.
மேக்னடைட்டு நானோ துகள்களின் இருப்பு அதன் உருவாக்கத்தைக் கட்டுப்படுத்தும் சவால்களை முன்வைக்கிறது: மேக்னடைட் சிபினல் கட்டமைப்பை உருவாக்குவதற்குத் தேவையான வினைகள் மற்றும் கட்ட மாற்றங்கள் சிக்கலானவையாகும்.[5] மேக்னடைட்டு கனிமத் துகள்கள் காந்த அதிர்வு அலை வரைவு போன்ற உயிரியல் பயன்பாடுகளில் பெரிதும் உதவுவதால் முக்கியத்துவம் வாய்ந்ததாகக் கருதப்படுகிறது. இரும்பு ஆக்சைடு மேக்னடைட்டு நானோ துகள்கள் தற்போது பயன்பாட்டில் உள்ள காடோலினியம்-அடிப்படையிலான முகவர்களுக்கு ஒரு நச்சுத்தன்மையற்ற மாற்றாக இருக்கும். இருப்பினும், துகள்களின் உருவாக்கத்தைக் கட்டுப்படுத்துவதில் உள்ள சிரமங்கள் மீ இணைகாந்த மேக்னடைட்டு துகள்கள் தயாரிப்பதில் இன்னும் பாதிப்பை உண்டாக்குகின்றன. மேக்னடைட்டு மீநுண் துகள்களின் சிறிய அளவு 8.5 A m−1 ஆகவும் செயற்கையாகத் தயாரிக்கப்படும் பெரிய அளவு மேக்னடைட்டு துகள்களின் அளவு 87 Am2 kg−1 ஆகவும் அறியப்படுகிறது.
நிறமி தரம் கொண்ட Fe3O4 செயற்கை மேக்னடைட்டை தொழில்துறை கழிவுகள், இரும்பு எச்சங்கள் அல்லது இரும்பு உப்புகள் கொண்ட கரைசல்களைப் பயன்படுத்தி தொழில்துறை செயல்முறைகளில் துணை தயாரிப்புகளாக உற்பத்தி செய்யப்படுகின்றன.
லாக்சு வினையில் Fe உலோகத்தின் ஆக்சிசனேற்றம். இம்முறையில் நைட்ரோபென்சீன் இரும்பு உலோகத்துடன் FeCl2 ஐப் பயன்படுத்தி அனிலின் உற்பத்தி செய்ய ஒரு வினையூக்கியாகப் பயன்படுத்தப்படுகிறது: [2]
- C6H5NO2 + 3 Fe + 2 H2O → C6H5NH2 + Fe3O4
FeII சேர்மங்களின் ஆக்சிசனேற்றம். எ.கா. இரும்பு(II) உப்புகளை ஐதராக்சைடுகளாகப் பெறுவது. அதன் பிறகு காற்றின் மூலம் ஆக்சிசனேற்றம் ஏற்படுகிறது. இங்கு pH ஐ கவனமாகக் கட்டுப்படுத்துவது உற்பத்தியாகும் ஆக்சைடை தீர்மானிக்கிறது.[2]
Fe2O3 உடன் ஐதரசன் சேரும் ஒடுக்க வினை:[6][7]
- 3Fe2O3 + H2 → 2Fe3O4 +H2O
கார்பன் மோனாக்சைடுடன் Fe2O3 ஒடுக்க வினை:[8]
- 3Fe2O3 + CO → 2Fe3O4 + CO2
உதாரணமாக FeII மற்றும் FeIII உப்புகளின் கலவைகளை எடுத்து அவற்றை காரத்துடன் கலந்து கூழ்ம Fe3O4 சேர்மத்தை தயாரிப்பதன் மூலம் நானோ-துகள்களின் உற்பத்தியை வேதியியல் முறையிலும் செய்ய முடியும். வினை நிலைமைகள் செயல்முறைக்கு முக்கியமானவையாகும். அவையே துகள்களின் அளவை தீர்மானிக்கின்றன.[9]
இரும்பு(II) கார்பனேட்டையும் வெப்பச் சிதைவுக்கு உட்படுத்தி இரும்பு(II,III) ஆக்சைடை பெறலாம்.:[10]
வினைகள்
எஃகு உற்பத்தி செயல்முறையின் ஒரு பகுதியாக இரும்பை உற்பத்தி செய்ய ஓர் ஊது உலையில் மேக்னடைட்டு தாது கார்பனோராக்சைடுடன் சேர்ந்து குறைக்கப்படுகிறது:[1]
Fe3O4 சேர்மத்தை கட்டுப்படுத்தப்பட்ட ஆக்சிசனேற்றத்திற்கு உட்படுத்தி மாக்மைட்டு எனப்படும் இரும்பு(III) ஆக்சைடை தயாரிக்கலாம்.:[11]
மேக்னடைட்டை காற்றில் தீவிரமாக வறுத்து சிவப்பு நிற நிறமியான இரும்பு(III) ஆக்சைடு ஏமடைட்டு (α-Fe2O3) பெறப்படுகிறது:[11]
கட்டமைப்பு
Fe3O4 ஆனது ஒரு கனசதுர தலைகீழ் சிபினல் குழு அமைப்பைக் கொண்டுள்ளது. இதில் ஆக்சைடு அயனிகள் மூடிய நெருக்கப்பொதிவு வரிசையிலும், Fe2+ அயனிகள் அனைத்தும் எண்கோண தளங்களில் பாதியையும் ஆக்கிரமித்துள்ளன. மேலும் Fe3+ அயனிகள் மீதமுள்ள எண்முக தளங்களிலும் நான்முகி தளங்களிலும் சமமாகப் பிரிக்கப்பட்டுள்ளன.
FeO மற்றும் γ-Fe2O3 அயனிகள் இரண்டும் ஆக்சைடு அயனிகளின் ஒரே மாதிரியான கனசதுர நெருக்கப் பொதிவு வரிசையைக் கொண்டுள்ளன. இது ஆக்சிசனேற்றம் மற்றும் குறைப்பு ஆகியவற்றின் மூலமாக மூன்று சேர்மங்களும் தங்களுக்கிடையில் பரிமாற்றத்திறகு தயாராக உள்ளதை காட்டுகிறது. ஏனெனில் இந்த வினைகள் ஒட்டுமொத்த கட்டமைப்பில் ஒப்பீட்டளவில் சிறிய மாற்றத்தை ஏற்படுத்துகின்றன. Fe3O4 மாதிரிகள் விகிதச்சமமின்றியும் இருக்கமுடியும்.[1]
எண்முக தளங்களில் உள்ள FeII மற்றும் FeIII அயனிகளின் எலக்ட்ரான் சுழல்கள் இணைக்கப்படுகின்றன. நான்முகி தளங்களில் உள்ள FeIII அயனிகளின் எலக்ட்ரான் சுழல்களும் முந்தையவற்றுக்கு எதிர் இணையாக இணைக்கப்படுகின்றன. Fe3O4 இன் இரும்பயல் காந்தவியல் பண்பு எழுகிறது. நிகர விளைவு என்னவென்றால் இரண்டு தொகுப்புகளின் காந்த பங்களிப்புகளும் சமநிலையில் இல்லாமல் நிரந்தர காந்தத்தன்மை காணப்படுகிறது.
உருகிய நிலையில், இரும்பு அயனிகள் சராசரியாக 5 ஆக்சிசன் அயனிகளுடன் ஒருங்கிணைக்கப்படுவதை சோதனை ரீதியாக கட்டுப்படுத்தப்பட்ட மாதிரிகள் காட்டுகின்றன.[12] திரவ நிலையில் ஒருங்கிணைப்பு தளங்களின் பரவல் காணப்படுகிறது. பெரும்பாலான FeII மற்றும் FeIII அயனிகள் இரண்டும் ஆக்சிசனுடன் 5-ஒருங்கிணைக்கப்பட்டவையாகவும் இரண்டின் சிறுபான்மை அயனிகள் 4- மற்றும் 6-மடங்கு ஒருங்கிணைப்பிலும் காணப்படுகின்றன.
பண்புகள்

Fe3O4 858 கெல்வின் (585 °செல்சியசு) கியூரி வெப்பநிலையுடன் இரும்பயல் காந்தவியல் பண்புகளை கொண்டுள்ளது. 120 கெல்வின் (−153 °செல்சியசு) வெப்பநிலையில் ஒரு நிலை மாற்றம் நிகழ்கிறது. வெர்வே மாற்றம் என்று அழைக்கப்படும் இந்நிகழ்வின்போது கட்டமைப்பு, கடத்துத்திறன் மற்றும் காந்தப் பண்புகளில் இடைநிறுத்தம் ஏற்படுகிறது.[13] இந்த விளைவு விரிவாக ஆராயப்பட்டு பல்வேறு விளக்கங்கள் முன்மொழியப்பட்டாலும், முழுமையாக புரிந்து கொள்ளப்பட்டதாகத் தெரியவில்லை.[14]
இரும்பு உலோகத்தை (96.1 nΩ m) விட இது அதிக மின் எதிர்ப்பைக் கொண்டிருக்கும் போது, Fe3O4 இன் மின் எதிர்ப்புத்திறன் (0.3 mΩ m [15]) Fe2O3 இன் மின் எதிர்ப்புத் திறனை விட (தோராயமாக kΩ m) குறைவாக உள்ளது. இது Fe3O4 இல் உள்ள FeII மற்றும் FeIII மையங்களுக்கு இடையேயான எலக்ட்ரான் பரிமாற்றத்திற்குக் காரணமாக அமைகிறது.[1]
பயன்கள்
- Fe3O4 ஒரு கருப்பு நிறமியாகப் பயன்படுத்தப்படுகிறது. (சி.ஐ. எண்.77499). செவ்வய் கருப்பு என்ற பெயராலும் அறியப்படுகிறது.[11]
- Fe3O4 ஏபர் செயல்முறையிலும் நீர்-வாயு மாற்ற வினையிலும் ஒரு வினையூக்கியாகப் பயன்படுத்தப்படுகிறது.[16]
- குரோமியம் ஆக்சைடால் நிலைப்படுத்தப்பட்ட இரும்பு ஆக்சைடின் உயர் வெப்பநிலை மாற்ற வினையூக்கியாகப் பயன்படுத்துகிறது.
- இரும்பு-குரோம் வினையூக்கியானது அணு உலை தொடக்கத்தில் குறைக்கப்பட்டு Fe3O4 சேர்மத்தை α-Fe2O3 சேர்மத்திலிருந்தும் Cr2O3 இலிருந்து CrO3 சேர்மத்தையும் உருவாக்குகிறது.
மருத்துவப் பயன்கள்
- மேக்னடைட்டு கனிமத் துகள்கள் காந்த அதிர்வு அலை வரைவு போன்ற உயிரியல் பயன்பாடுகளில் பெரிதும் பயன்படுத்தப்படுகிறது.[17]
- பெரகீம், ரியென்சோ என்ற வணிகப் பெயர்களில் விற்கப்படும் பெருமோக்சிட்டால் நெடுநாள் சிறுநீரகக் கோளாறு சிகிச்சையில் பயன்படுத்தப்படுகிறது.[18][19][20] Ferumoxytol is manufactured and globally distributed by AMAG Pharmaceuticals.[18][20]
மேற்கோள்கள்
வெளி இணைப்புகள்
வார்ப்புரு:இரும்பு சேர்மங்கள் வார்ப்புரு:Oxides வார்ப்புரு:Oxygen compounds
- ↑ 1.0 1.1 1.2 1.3 வார்ப்புரு:Greenwood&Earnshaw
- ↑ 2.0 2.1 2.2 வார்ப்புரு:Cite book
- ↑ வார்ப்புரு:Cite journal
- ↑ வார்ப்புரு:Cite journal
- ↑ வார்ப்புரு:Cite journal
- ↑ வார்ப்புரு:Cite patent
- ↑ வார்ப்புரு:Cite journal
- ↑ வார்ப்புரு:Cite journal
- ↑ Arthur T. Hubbard (2002) Encyclopedia of Surface and Colloid Science CRC Press, வார்ப்புரு:ISBN
- ↑ வார்ப்புரு:Cite web
- ↑ 11.0 11.1 11.2 Gunter Buxbaum, Gerhard Pfaff (2005) Industrial Inorganic Pigments 3d edition Wiley-VCH வார்ப்புரு:ISBN
- ↑ வார்ப்புரு:Cite journal
- ↑ வார்ப்புரு:Cite journal
- ↑ வார்ப்புரு:Cite journal
- ↑ வார்ப்புரு:Cite journal
- ↑ Sunggyu Lee (2006) Encyclopedia of Chemical Processing CRC Press வார்ப்புரு:ISBN
- ↑ வார்ப்புரு:Cite journal
- ↑ 18.0 18.1 வார்ப்புரு:Cite web
- ↑ வார்ப்புரு:Cite journal
- ↑ 20.0 20.1 வார்ப்புரு:Cite web
வார்ப்புரு:Cite web