உராய்வு

testwiki இலிருந்து
Jump to navigation Jump to search

உராய்வு விசை என்பது இரு திடபொருள் அடுக்குகள் அல்லது திரவ அடுக்குகள் ஒன்றன்மீதொன்று சறுக்கும்போது ஏற்படும் விசையாகும். உராய்வு விசைகளில் பல வகைகள் உள்ளன:

  1. உலர் உராய்வு விசை தொடர்பில் உள்ள இரண்டு திட பரப்புகளின் ஒப்புமை நகர்தலை (relative motion) தடுக்கும் வண்ணம் அமையும். உலர் உராய்வு விசை, நகரும் பரப்புகளுக்கு இடையே வரும் அசைவு உராய்வு விசை மற்றும் நகரா பரப்புகளுக்கு இடையே வரும் நிலையான உராய்வு விசை என மேலும் பிரிக்கப்படும்.
  2. திரவ உராய்வு விசை ஒன்றுக்கொன்று தொடர்பிலிருக்கும், நகரும், ஒரு பிசுபிசுப்பு தன்மை கொண்ட திரவத்தில் உள்ள, அடுக்குகளுக்கு இடையில் நிகழும் விசையாகும்.[1][2]
  3. எண்ணெய் உராய்வு விசை (lubricated friction) என்பது இரு திடப்பொருள் பரப்புகளுக்கு இடையில் உள்ள ஒரு திரவத்தில் ஏற்படும் உராய்வு விசை ஆகும்.[3][4][5]
  4. தோல் உராய்வு விசை (skin friction) ஒரு திரவத்தில் இருக்கும் ஒரு திடப்பொருளின் இயக்கத்தை எதிர்க்கும் சக்தியைக் குறிக்கிறது.
  5. அக உராய்வு விசை(internal friction) ஒரு திடப்பொருளின் உருவம் மாறுதலுக்கு உள்ளாகும் போது அத்திடப்பொருளின் கூறுகளுக்கு இடையே நிகழும் எதிர்ப்பு விசையைக் குறிக்கிறது.

தொடர்பில் இருக்கும் பரப்புகள் ஒன்றுக்கொன்று நகரும்போது, அவ்விரண்டு பரப்புகளுக்கு இடையே, உராய்வு விசை வெப்பம் மூலம் இயக்க ஆற்றலை வெளிப்படுத்துகிறது. இப்பண்பு பெரிய விளைவுகளை ஏற்படுத்தலாம். உதாரணத்திற்கு இரு மரத்துண்டுகளை தேய்ப்பதன் மூலம் தீயை உண்டாக்கிவிடலாம். இயக்க ஆற்றல் உராய்வு விசை உள்ள இடங்களில் வெப்பமாக மாற்றப்படுகிறது. உதாரணத்திற்கு ஒரு பிசுபிசுப்பு தன்மை கொண்ட திரவத்தை கிளறும்போது அத்திரவம் வெப்பமடைதலைக் காணலாம்.

உராய்வு விசையே ஒரு அடிப்படை விசை இல்லை. ஆனால் இரண்டு தொடர்பிலுள்ள பரப்புகளில் உள்ள மின்சுமை (charge) கொண்ட துகள்களுக்கு இடையே உள்ள அடிப்படை மின்காந்த சக்தியால் எழுகிறது. இந்த இடையீடுகளின் சிக்கலான தன்மையால் முதலிலிருந்து நியூட்டன் கொள்கைகள் மூலம் உராய்வு விசையை கணக்கீடு செய்வது மற்றும் பகுப்பாய்வு செய்வது ஆகியவை மிகக் கடினமாகின்றன. ஆதலால் சோதனைகளின் மூலம் உராய்வு விசை தத்துவத்தை மேம்படுத்த வேண்டி இருக்கிறது.

வரலாறு

உராய்வு விசையின் விதிகள் முதன்முதலில் லியோனார்டோ டா வின்சி (1452-1519) என்பவரால் கண்டுபிடிக்கப்பட்டது. ஆனால் அவரது குறிப்பேடுகளில் இவை வெளிப்படுத்தப்படவில்லை.[6][7][8] இவைகள் அமோண்டோன்ஸ் என்பவரால் திரும்பக் கண்டுபிடிக்கப்பட்டது. மேற்பரப்பு சீரின்மை மற்றும் பரப்புகளை ஒன்றாக அழுத்தும் எடையை எழுப்பத் தேவைப்படும் விசை ஆகியவை மூலமாக அமோண்டோன்ஸ் உராய்வு விசையின் தன்மையை விளக்கினார். பிறகு யூலர் இத்தத்துவத்தை மேம்படுத்தி நிலையான உராய்வு விசை மற்றும் அசைவு உராய்வு விசைகளை நன்கு பிரித்து விளக்கினார்.[9]

உராய்வு விசை பற்றி மேலும் சார்லஸ்-ஆகஸ்டின் டி கூலாம்ப் (1785) ஆராய்ச்சி செய்தார். கூலோம்ப் தொடர்பில் உள்ள பொருட்களின் தன்மை, எவ்வளவு பரப்பளவு தொடர்பில் இருக்கிறது, எவ்வளவு எடை அழுத்தம் இருக்கிறது என்பனவற்றை கண்காணித்து உராய்வு விசை தத்துவத்தை முன்வைத்தார்.

இன்றளவில் உராய்வு விசையால் அணு அளவில் என்ன நடக்கிறது என்பது பற்றிய ஆராய்ச்சிகள் நடக்கின்றன.

உலர் உராய்வு விசை சட்டங்கள்

அசைவு உராய்வு விசையின் அடிப்படை பண்புகள் 15இலிருந்து 18ஆம் நூற்றாண்டுகளில் நடத்திய பரிசோதனைகள் மூலம் கண்டுபிடிக்கப்பட்டது மேலும் அவை மூன்று சட்டங்களாக தெரிவிக்கப்பட்டது:

  • அமோண்டோன்சின் முதல் சட்டம்: உராய்வு விசை சுமத்தப்படும் சுமையின் நேர் விகிதத்தில் இருக்கும்.
  • அமோண்டோன்ஸ் இரண்டாம் சட்டம்: உராய்வு விசை தொடர்பிலுள்ள பொருட்களின் பரப்பளவை சார்ந்தது அல்ல.
  • கூலோம்பின் உராய்வு விசை சட்டம்: அசைவு உராய்வு விசை பொருளின் வேகத்தை சார்ந்ததல்ல.

உலர் உராய்வு விசை

உலர் உராய்வு விசை தொடர்பில் உள்ள இரண்டு திட பரப்புகளின் ஒப்புமை நகர்தலை (relative motion) தடுக்கும் வண்ணம் அமையும். உலர் உராய்வு விசை, நகரும் பரப்புகளுக்கு இடையே வரும் அசைவு உராய்வு விசை மற்றும் நகரா பரப்புகளுக்கு இடையே வரும் நிலையான உராய்வு விசை என மேலும் பிரிக்கப்படும்.

சார்லஸ் ஆகஸ்டின் டி கூலாம்பின் கீழ் பெயரிடப்பட்டுள்ள கூலூம் உராய்வு விசை, உலர் உராய்வு விசையை கணக்கிட பயன்படுத்தப்படும் ஒரு தோராயமான மாதிரி. கீழ்வரும் சமன்பாடால் இவ்விசை கணிக்கப்படுகிறது:

FfμFn

இதில்

  • Ff என்பது வரும் உராய்வு விசை ஆகும். இது பரப்புகளின் திசையில் ஒப்புமை நகர்தலை தடுக்கும் வகையில் அமையும்.
  • μ, என்பது தொடர்பிலுள்ள பொருட்களின் ஒரு பண்பாகும்.
  • Fn என்பது இரண்டு பரப்புகளும் மற்றதன் மேல் கொடுக்கும் செங்குத்து விசையாகும்.

கூலாம்ப் உராய்வு விசை சுழியத்திலிருந்து μFn வரை எந்த எண்ணை வேண்டுமானாலும் அதன் அளவாக எடுத்துக்கொள்ளலாம்.

எனவே, நிலைமை நிலையில், உராய்வு விசை பரப்புகளுக்கு இடையே நிகழக்கூடிய நகர்தலை தடுக்க போதுமான அளவு விசையையே கொடுக்கும். ஆதலால் இந்த வழக்கில், உராய்வு விசையை சரியாக கணிப்பதற்கு மாறாக அதிகபட்சம் என்ன அளவை உராய்வு விசை எடுக்கும் என்பதை இந்த கூலாம் தோராயம் வழங்குகிறது.

இதுவே அசைவு உராய்வு விசையெனின் அது எப்பொழுதும் μFn என்ற அளவை கொண்டிருக்கும். உராய்வு விசை எப்போதும் இரண்டு பரப்புகளுக்கு இடையே நிகழக்கூடிய ஒப்புமை நகர்தலை தவிர்க்கும் வண்ணம் அமையும்.

செங்குத்து விசை

பரப்பின் மீது உள்ள ஒரு பொருளின் பிரீ பாடி வரைபடம். அம்புக்குறிகள் விசைகளின் அளவையும் திசையையும் குறிக்கும் திசையன்களைக் குறிக்கின்றன.N என்பது செங்குத்து விசை, mg என்பது புவி ஈர்ப்பு விசை, Ff என்பது உராய்வு விசை.

செங்குத்து விசையென்பது இரண்டு பரப்புகளை அழுத்தும் விசையாக விவரிக்கப்படுகிறது. அதன் செயல்படும் திசை பரப்புகளுக்கு செங்குத்தாக இருக்கும். மிக எளிமையான நிலையில், ஒரு பொருள் ஒரு பரப்பின் மேல் இருக்கும்போது புவி ஈர்ப்பு விசை காரணமாக செங்குத்து விசையை கொண்டிருக்கும். இந்த இடத்தில், உராய்வு விசை , அளவில், பொருளின் எடை, ஈர்ப்பு காரணமாக முடுக்கம், மற்றும் உராய்வு விசை குணகம் (coefficient of friction) ஆகியவற்றின் பெருக்கலாக அமையும். எனினும், உராய்வு விசை குணகம் பொருட்களின் எடையை பொறுத்தோ கொள்ளளவை பொருத்தோ அமையாது. அது இரு பொருட்களும் யாவை என்பதை மட்டுமே பொருத்து அமையும். உதாரணமாக, ஒரு பெரிய அலுமினிய தொகுதி ஒரு சிறிய அலுமினிய தொகுதியின் உராய்வு விசை குணகத்தையே கொண்டுள்ளது. எனினும், உராய்வு விசையின் அளவு செங்குத்து விசையை சார்ந்து அமையுமாதலால் பொருளின் எடையை மறைமுகமாக சார்ந்து அமையும்.

ஒரு பொருள் ஒரு மட்டமான பரப்பில் இருக்கும்போது மேலும் அதன் மீது செயல்படும் விசை செங்குத்து உறுப்பு எதுவும் கொண்டிருக்காதபோது அதன் மீது செயல்படும் செங்குத்து விசையானது அதன் எடையாகவே அமையும். மாறாக ஒரு பொருள் ஒரு சாய்தளத்தில் இருக்கும்போது அதன்மீது செயல்படும் செங்குத்து விசை அதன் எடையை விட குறைவாக இருக்கும். ஏனெனில் எடையை விட குறைவான விசையே தளத்திற்கு செங்குத்தாக செயல்படுகிறது. எனவே, இது போன்ற நிலைகளில் செங்குத்து விசை திசையன் பகுப்பாய்வு மூலம் கணிக்கப்படுகிறது. நிலைமையை பொறுத்து, செங்குத்து விசை கணக்கீடு ஈர்ப்பு தவிர வேறு விசைகளை கணக்கில் கொள்ளக்கூடும்.

உராய்வு விசை குணகம்

பெரும்பாலும் கிரேக்க எழுத்து μவால் குறிக்கப்படும் உராய்வு விசை குணகம் (COF), இரண்டு உடல்கள் மற்றும் அவற்றை ஒன்றாக அழுத்தும் விசை ஆகியவற்றின் விகிதத்தை விவரிக்கும் பரிமாணமற்ற ஸ்கேலார் மதிப்பு ஆகும். உராய்வு விசை குணகம் பயன்படுத்தப்படும் பொருட்கள் இரண்டையும் சார்ந்துள்ளது; உதாரணத்திற்கு இரும்பு மற்றும் பனி ஆகியவை குறைந்த உராய்வு விசை குணகத்தை கொண்டுள்ளன. அதே நேரத்தில் றப்பர் மற்றும் சிமெண்ட் தரை ஆகியவை உராய்வு விசை குணகத்தை உயர்வாக கொண்டுள்ளன. பூஜ்ஜியத்திற்கு அருகில் என்பதில் இருந்து ஒன்றை விட அதிகம் என்பது வரை உராய்வு விசை குணகத்தின் மதிப்புகள் கண்டறியப்பட்டுள்ளன. நல்ல சூழ்நிலையில், எடுத்துக்காட்டாக, உறுதியான ஒரு டயர் 1.7 என்ற உராய்வு விசை குணகத்தை கான்கிரீட் மீது கொண்டு இருக்கலாம். ஒன்றுக்கொன்று ஒப்பிடுகையில் ஓய்வில் இருக்கும் பரப்புகளில் நிலையான உராய்வு விசை குணகம். இது பொதுவாக அதன் அசைவு உராய்வு விசை குணகம் எதிர்வை காட்டிலும் பெரியது.

ஒப்பிடுகையில் இயக்கத்தில் உள்ள பரப்புகளில் μ=μk இதில் μk அசைவு உராய்வு விசை குணகம். கூலாம் உராய்வு விசை μFn என்பதனற்கு சமமாக இருக்கும். மேலும் ஒவ்வொரு பரப்பிலும் செயல்படும் உராய்வு விசை மற்ற பரப்பிற்கு ஒப்பிடுகையில் உராய்வு விசை இல்லையெனில் இதன் இயக்கம் என்னவாக இருந்திருக்குமோ அதனை எதிர்க்கும் வகையில் அமையும்.

உராய்வு விசை குணகம் என்பது ஆர்தர்-ஜூல்ஸ் மோறன் என்பவரால் அறிமுகப்படுத்தப்பட்டது. உராய்வு விசை குணகம் ஒரு அனுபவ அளவீடு ஆகும். அதாவது சோதனைகள் நடத்துவதன் மூலமே இந்த உராய்வு விசை குணகத்தை கண்டறிய முடியும். பொதுவாக நிலையான உராய்வு விசை குணகம் , அசைவு உராய்வு விசை குணகத்தை விட சற்று அதிகமாக இருக்கும். டெப்ளான் மற்றும் டெஃப்ளான் போன்ற சில இணைகளுக்கு இவை இரண்டும் சமமாகக்கூட இருக்கும்.

அநேகமான பொருட்கள் 0.3 மற்றும் 0.6 என்பதற்கு இடையே தங்களுக்கான உராய்வு விசை குணக மதிப்பை கொண்டிருக்கும். இந்த வரையறைக்கு வெளியே உராய்வு விசை குணகத்தின் மதிப்பு போவது மிக அரியதாகும். ஆனால் டெஃப்ளான், எடுத்துக்காட்டாக, 0.04 என்றளவில் குறைந்த உராய்வு விசை குணகத்தை கொண்டிருக்க முடியும். உராய்வு விசை குணகத்தின் மதிப்பு சுழியம் என்றால் உராய்வு விசையே இல்லை என்றாகிவிடும். ஆனால் காந்த இலகுமம் கொண்ட வாகனங்கள் கூட காற்றினால் இழுவை கொண்டுள்ளன என்பதை காண்க. மற்ற பரப்புகளில் தொடர்புகொள்ளும்போது ரப்பர் 1-2 வரையறையில் உராய்வு விசை குணக மதிப்புகளை பெறலாம். இயற்பியலில் ஒரு வழக்கமாக μ எப்போதும் <1 என்று பராமரிக்கப்படுகிறது. ஆனால் இது உண்மை அல்ல. மிக பொருத்தமான பயன்பாடுகளில் பெரும்பாலும் μ <1 என்ற கூற்று உண்மையே. μவின் மதிப்பு 1க்கு மேலே என்பது ஒரு பொருள் சரிய அதன் மீது செயல்படும் செங்குத்து விசையை விட அதிக விசை அளிக்க வேண்டும் என்பதையே குறிக்கும். எடுத்துக்காட்டாக, சிலிகான் ரப்பர் அல்லது அக்ரிலிக் ரப்பர்-பூசிய பரப்புகளில் 1ஐ விட கணிசமான அளவிற்கு உராய்வு விசை குணகத்தின் மதிப்பு அதிகமாக இருக்கும்.

உராய்வு விசை குணகம் ஒரு "பொருள் சார்ந்த பண்பு " என்றபோதிலும் வெப்பநிலை, சுற்றுப்புற தட்பவெப்பநிலை முதலியன சார்ந்தும் மாறுபடும்.

தோராய உராய்வு விசை குணகங்கள்

பொருட்கள் நிலையான உராய்வு விசை, μs
உலர்ந்த மற்றும் சுத்தமான உயவூட்டப்பட்ட
அலுமினியம் எஃகு 0.61
தாமிரம் எஃகு 0.53
பித்தளை எஃகு 0.51
இரும்பு நடித்தார் தாமிரம் 1.05
இரும்பு நடித்தார் துத்தநாகம் 0.85
கான்கிரீட் (ஈரமான) இரப்பர் 0.30
கான்கிரீட் (உலர்ந்த) இரப்பர் 1.0
கான்கிரீட் விறகு 0.62[10]
தாமிரம் கண்ணாடி 0.68
கண்ணாடி கண்ணாடி 0.94
உலோகம் விறகு 0.2–0.6[10] 0.2 (wet)[10]
பாலிதீன் எஃகு 0.2[11] 0.2[11]
எஃகு எஃகு 0.80[11] 0.16[11]
எஃகு PTFE 0.04[11] 0.04[11]
PTFE PTFE 0.04[11] 0.04[11]
விறகு விறகு 0.25–0.5[10] 0.2 (ஈரமான)[10]

ஒரு AlMgB14-TiB2 கலப்பு, தோராயமாக 0.02 என்ற உராய்வு விசை குணகத்தை கொண்டுள்ளது. இது நீர்-கிளைகோல் சார்ந்த லூப்ரிகண்டுகள் இருக்கும்போதாகும். சாதாரண உலர் நிலைகளில் 0.04 முதல் 0.05 வரை உராய்வு விசை குணகத்தை இது கொண்டிருக்கும்.

உராய்வு விசை கோணம்

சில பயன்பாடுகளில் இரு பொருட்களில் ஒன்று சரியத்தொடங்கும் அதிகபட்ச கோணம் அடிப்படையில் நிலையான உராய்வு விசையை விவரிப்பது நன்றாக இருக்கும். இந்த கோணம்தான் உராய்வு விசை கோணம் என்று அழைக்கப்படுகிறது. இது எப்படி விவரிக்கப்படும் எனில்:

tanθ=μs

இதில் θ என்பது செங்குத்திலிருந்து கணக்கிடப்படும் கோணமாகும். μ என்பது நிலையான உராய்வு விசை குணகமாகும்.[12] இந்த சூத்திரம் மூலம் கோணத்தை சோதனை அளவீடுகளில் இருந்து கணக்கிட்டு μவை கண்டுபிடிக்க உதவும்.

கூலாம் மாதிரியின் கட்டுப்பாடுகள்

கூலாம்பின் உராய்வு விசைக்கான தோராயம்

  • பரப்புகள், அணு அளவில், தங்கள் மொத்த பரப்பளவில் ஒரு சிறிய அளவே தொடர்பில் உள்ளன
  • இந்த தொடர்பில் உள்ள பரப்பளவு செங்குத்து விசையின் நேர்விகிதத்தில் இருக்கும்
  • உராய்வு விசை செயல்படும் செங்குத்து விசையின் நேர் விகிதத்தில் இருக்கும்

ஆகிய அனுமானங்கள் வைத்து ஏற்றுக்கொள்ளப்படுகிறது. இந்த அனுமானங்கள் ஒரு புறம் இருக்க இது முழுக்க முழுக்க சோதனைகளால் உருவாக்கப்பட்ட ஒரு சூத்திரமாகும். இது ஒரு மிகவும் சிக்கலான இயற்பியல் விளைவின் தோராயமான ஆனால் மிகத்துல்லியமான சூத்திரமாகும். இத்தோராயத்தின் வலிமை இதன் எளிமை மற்றும் பற்செயலாக்கம் ஆகியவை ஆகும். இது அநேக சாதாரண சந்தர்ப்பங்களுக்கு ஒத்துப்போகும் சூத்திரமாகும்.

உலர் உராய்வு விசை மற்றும் நிலையற்ற தன்மை

உலர் உராய்வு விசை இல்லாதபோது ஒரு நிலையான நடத்தையை காட்டும் இயந்திர அமைப்புகளில் நிலையற்ற தன்மை பல வகையில் உராய்வு விசையால் தூண்டிவிடப்படலாம். உதாரணமாக, உராய்வு விசை தொடர்புடைய இயக்கவியல் நிலையற்ற தன்மை பிரேக் கீச்சென்று தீர்க்கமாய் சத்தமிடுவது மற்றும் யாழிலிருந்து வரும் இசை ஆகியவற்றிற்கு காரணமாக கருதப்படுகிறது.

உராய்வு விசை ஆற்றல்

ஆற்றல் அழிவின்மை விதிபடி உராய்வு விசையால் எந்த ஆற்றலும் அழிக்கப்படுவதில்லை. மாறாக அது வேறொரு வகையில் இழக்கப்படுகிறது. ஆற்றல் பிற வடிவங்களில் இருந்து வெப்பமாக மாற்றப்படுகிறது. தரையில் உருளும் ஒரு பந்து நின்றுவிடுவதெதனால் என்றால் அதன் இயக்க ஆற்றல் வெப்பமாக மாற்றப்பட்டு அது இயக்கமற்று போகிறது. வெப்பம் விரைவில் சிதறடிக்கப்படுவதால் அரிஸ்டாட்டில் போன்ற பல பழங்கால தத்துவ மேதைகள் ஒரு இயக்க விசை இல்லையெனில் நகரும் பொருட்கள் ஆற்றல் இழந்துவிடுவன என்று எண்ணினார்.

ஒரு பொருள் ஒரு பரப்பில் தள்ளப்படுகிறபோது, வெப்பமாக மாற்றப்படும் ஆற்றல் பின்வருமாறு:

Eth=μkFn(x)dx

இதில்

Fn என்பது செங்குத்து விசையாகும்,
μk என்பது அசைவு உராய்வு விசை குணகமாகும்,
x என்பது பொருள் நகரும் கோ-ஆர்டினேட் ஆகும்.

உராய்வு விசை காரணமாக இழக்கப்படும் வெப்பம் தெர்மோடைனமிக் மீளாத்தன்மைக்கான ஒரு சிறந்த எடுத்துக்காட்டாகும்

இவற்றையும் காண்க

சான்றுகள்

வார்ப்புரு:Reflist

"https://ta.wiki.beta.math.wmflabs.org/w/index.php?title=உராய்வு&oldid=123" இலிருந்து மீள்விக்கப்பட்டது