குத்துக்கோடு (முக்கோணம்)

வடிவவியலில் ஒரு முக்கோணத்தின் குத்துக்கோடு(Altitude) என்பது. அம்முக்கோணத்தின் ஒரு உச்சியிலிருந்து அந்த உச்சியின் எதிர்ப்பக்கத்தைத் தனக்குள் கொண்டிருக்கும் கோட்டிற்கு வரையப்படும் ஒரு செங்குத்துக்கோடாகும். எதிர்ப்பக்கத்தைக் கொண்டிருக்கும் கோடானது அப்பக்கத்தின் நீட்சி எனப்படும். இந்தப் பக்க நீட்டிப்பும் குத்துக்கோடும் வெட்டிக்கொள்ளும் புள்ளி, குத்துக்கோட்டின் அடி எனப்படும். குத்துக்கோடு வரையப்படும் முக்கோணத்தின் உச்சிக்கும் குத்துக்கோட்டின் அடிக்கும் இடையேயுள்ள தூரம் குத்துக்கோட்டின் நீளம் எனப்படும்.
குத்துக்கோட்டின் நீளம் முக்கோணத்தின் பரப்பு காண்பதற்குப் பயன்படுகிறது. முக்கோணத்தின் அடிப்பக்கம் மற்றும் குத்துக்கோட்டின் நீளம் இரண்டின் பெருக்குத்தொகையில் பாதியளவாக முக்கோணத்தின் பரப்பு அமையும். முக்கோணவியல் சார்புகள்மூலம் குத்துக்கோட்டின் நீளமானது முக்கோணத்தின் பக்கநீளங்களுடன் தொடர்பு கொண்டுள்ளது.
ஒரு இருசமபக்க முக்கோணத்தின் சமமில்லாத மூன்றாவது பக்கத்திற்கு வரையப்படும் குத்துக்கோட்டின் அடி, அப்பக்கத்தின் நடுப்புள்ளியாக அமையும். மேலும் அந்தக் குத்துக்கோடானது அதுவரையப்பட்ட உச்சியிலுள்ள கோணத்தின் இருசமவெட்டியாகவும் அமையும்.
ஒரு செங்கோண முக்கோணத்தின் செம்பக்கத்தின் குத்துக்கோடானது செம்பக்கத்தை p மற்றும் q அளவுகளாகப் பிரிக்கிறதென்றால்:
- இங்கு குத்துக்கோட்டின் நீளம் h.
செங்கோட்டுச்சந்தி
ஒரு முக்கோணத்தின் மூன்று குத்துக்கோடுகளும் ஒரு புள்ளியில் சந்திக்கும். இப்புள்ளி அம்முக்கோணத்தின் குத்துச்சந்தி அல்லது செங்குத்துச்சந்தி அல்லது செங்கோட்டுச்சந்தி (orthocenter) எனப்படும். ஒரு முக்கோணம் விரிகோண முக்கோணமாக இல்லாமல் "இருந்தால், இருந்தால் மட்டுமே", அம்முக்கோணத்தின் செங்கோட்டுச்சந்தியானது அம்முக்கோணத்துக்குள்ளேயே அமையும்.
ஒரு முக்கோணத்தின் செங்குத்துச்சந்தி, திணிவு மையம், சுற்றுவட்ட மையம் மற்றும் ஒன்பது-புள்ளி வட்டமையம் நான்கும் ஆய்லர் கோட்டின்மீது அமையும். செங்குத்துச்சந்தி மற்றும் சுற்றுவட்ட மையங்களின் நடுப்புள்ளியாக ஒன்பது-புள்ளி வட்டமையம் அமையும். திணிவு மையத்திற்கும் சுற்றுவட்ட மையத்திற்கும் இடைப்பட்ட தூரமானது திணிவு மையத்திற்கும் செங்குத்துச்சந்திக்கும் இடைப்பட்ட தூரத்தில் பாதியாக இருக்கும்.
ஒரு தளத்தில் உள்ள நான்கு புள்ளிகளில் ஒன்று மற்ற மூன்று புள்ளிகளால் அமையும் முக்கோணத்தின் செங்குத்துச்சந்தியாக அமையுமானால் அந்நான்கு புள்ளிகளும் ஒரு செங்குத்துச்சந்தித் தொகுதியாகும் (orthocentric system).
-ன்
கோணங்கள்: A, B, C, பக்க நீளங்கள்: a = |BC|, b = |CA|, c = |AB|
செங்குத்துச்சந்தி:
முந்நேரியல் ஆயதொலைவுகளில்(trilinear coordinates):
sec A : sec B : sec C
ஈர்ப்புமைய ஆயதொலைவுகளில் (Barycentric coordinates ):
ஆர்த்திக் முக்கோணம்

செங்கோண முக்கோணம் அல்லாத ஒரு முக்கோணத்தின் குத்துக்கோடுகளின் அடிகளால் உருவாகும் முக்கோணம் ஆர்த்திக் முக்கோணம் அல்லது குத்துக்கோட்டு முக்கோணம் எனப்படும். இம்முக்கோணம் எடுத்துக்கொள்ளப்பட்ட மூல முக்கோணத்தின் செங்குத்துச்சந்தியின் பாதமுக்கோணமாகவும், இதன் உள்வட்டமையமானது மூல முக்கோணத்தின் செங்குத்துச்சந்தியாகவும் அமையும்.[1]
பின்வருமாறு வரையப்படும் முக்கோணத்துடன் ஆர்த்திக் முக்கோணம் நெருங்கிய தொடர்புடையது.
-ன் சுற்றுவட்டத்திற்கு, முக்கோணத்தின் உச்சி A -ல் வரையப்படும் தொடுகோடு என்க.
இதே முறையில் , இரண்டையும் எடுத்துக் கொள்ள வேண்டும்.
- A" = ∩
- B" = ∩
- C" = ∩
A"B"C" ஆனது -ன் சுற்றுவட்டத்தை வெளிப்புறமாகத் தொடும் முக்கோணமாகும். இந்த முக்கோணத்துடன் ஆர்த்திக் முக்கோணமானது, ஒத்தநிலையுடையதாக (homothetic) இருக்கும்.
தரப்பட்ட ஒரு குறுங்கோண முக்கோணத்திற்குள் வரையக்கூடிய மிகச்சிறிய சுற்றளவு கொண்ட முக்கோணத்தைப் பற்றிய 1775-ம் ஆண்டின் ஃபாக்னானோ புதிருக்கான (இத்தாலிய கணிதவியலாளர்-ஜூலியோ கார்லோ டி டோஷி டி ஃபாக்னானோ) விடையை இந்த ஆர்த்திக் முக்கோணம் தருகிறது.
முந்நேரியல் ஆயதொலைவுகள்(Trilinear coordinates):
ஆர்த்திக் முக்கோணத்தின் உச்சிகள்:
- A' = 0 : sec B : sec C
- B' = sec A : 0 : sec C
- C' = sec A : sec B : 0
சுற்றுவட்டத்தை வெளிப்புறமாகத் தொடும் முக்கோணத்தின் உச்சிகள்:
- A" = −a : b : c
- B" = a : −b : c
- C" = a : b : −c
பிற குத்துக்கோட்டுத் தேற்றங்கள்
சமபக்க முக்கோணத்தேற்றம்
சமபக்க முக்கோணத்துக்குள் அமையும் ஏதேனும் ஒரு புள்ளி P -லிருந்து முக்கோணத்தின் மூன்று பக்கங்களுக்கு வரையப்படும் செங்குத்துகளின் நீளங்களின் கூடுதல் அம்முக்கோணத்தின் குத்துக்கோட்டின் நீளத்திற்குச் சமம்.
உள்வட்ட ஆரத் தேற்றம்
ஏதேனும் ஒரு முக்கோணத்தின் பக்க அளவுகள் a, b, c மற்றும் குத்துக்கோடுகளின் நீளங்கள் α, β, η எனில், உள்வட்ட ஆரம் r மற்றும் குத்துக்கோட்டின் நீளங்களுக்கும் இடையே உள்ள தொடர்பு:
ஒரு செங்கோண முக்கோணத்தின் செம்பக்கத்தின் மற்றும் பிற இரு பக்கங்களின் வர்க்கங்கள் முறையே, c, h, s எனில் இவற்றுடன் உள்வட்ட ஆரத்தின் தொடர்பு:
சிம்ஃபோனிக் தேற்றம்[2]
சிம்ஃபோனிக் தேற்றத்தின்படி ஒரு செங்கோண முக்கோணத்தின் செம்பக்கத்தின் மற்றும் பிற இரு பக்கங்களின் வர்க்கங்கள் முறையே c, h, s; மற்றும் குத்துக்கோடுகளின் நீளங்கள் α, β, η. இவை தங்களுக்குள்ளாகப் பின்வருமாறு தொடர்பு கொண்டிருக்கும்.
(c2,h2,s2) மற்றும் (α2,β2,η2) இரண்டும் இசைத்தொடர்ச்சியில் அமையும்.
மேலும்,
- மற்றும் இரண்டும் பித்தாகரசு தேற்றத்தின் விளைவின்படி அமையும்.
பரப்பு தேற்றம்
முக்கோணத்தின் பக்கங்கள் முறையே a, b, மற்றும் c. இவற்றுக்கு வரையப்படும் குத்துக்கோடுகளின் நீளங்கள் முறையே , , மற்றும் ,
குத்துக்கோடுகளின் நீளங்களின் தலைகீழிகளின் நீளங்களின் கூடுதலில் பாதி: [3]
முக்கோணத்தின் பரப்பின் தலைகீழி:
குறிப்புகள்
- ↑ வார்ப்புரு:Cite book See also: Corollary 5.5, p. 318.
- ↑ வார்ப்புரு:Cite arxiv
- ↑ Mitchell, Douglas W., "A Heron-type formula for the reciprocal area of a triangle," Mathematical Gazette 89, November 2005, 494.
மேலும் பார்க்க
மேற்கோள்கள்
வெளி இணைப்புகள்
- Orthocenter of a triangle With interactive animation
- Animated demonstration of orthocenter construction Compass and straightedge.
- An interactive Java applet for the orthocenter வார்ப்புரு:Webarchive
- Fagnano's Problem by Jay Warendorff, Wolfram Demonstrations Project.