பெல்லின் சமன்பாடு

testwiki இலிருந்து
Jump to navigation Jump to search
n = 2 இனதும், மேலும் இதன் ஆறு முழு எண் தீர்வுகளுக்குமான பெல் சமன்பாடு.

பெல்லின் சமன்பாடு (Pell's equation) கீழ்க்கண்டவாறு அமைந்துள்ள ஏதாவதொரு முழுவெண் கெழு சமன்பாடு ஆகும்.

x2ny2=1

இங்கு n ஒரு வர்க்கமல்லாத முழு எண்ணும், x,y முழு எண்களும் ஆகும். கார்ட்டீசியன் ஆள்கூறுகளில், இச்சமன்பாடு ஒரு அதிபரவளைவு வடிவத்தைக் குறிக்கிறது. இவ்வளைவு x, y என்பன முழு எண்களாக இருக்கும் புள்ளிகளூடாகச் செல்லும்போது x, y என்பவற்றுக்கான தீர்வு கிடைக்கிறது. x = 1, y = 0 என்பது இவ்வாறான ஒரு எளிமையான தீர்வு. ஜோசப் லூயி லாக்ராஞ்சி என்பவர் n என்பது நிறைவர்க்கமாக இல்லாதிருக்கும்வரை பெல் சமன்பாட்டுக்கு முடிவில்லாத அளவு பல வெவ்வேறான முழு எண் தீர்வுகள் இருக்கும் என நிறுவினார். இத்தீர்வுகளை, n இன் வர்க்கமூலத்தை x/y என்னும் வடிவத்திலான விகிதமுறு எண்ணால் துல்லியமாக அண்ணளவாக்குவதற்குப் பயன்படுத்தலாம்.

இந்தச் சமன்பாடு தொடர்பான ஆய்வு யோன் பெல் என்பவரால் செய்யப்பட்டது என லெனார்ட் ஆய்லர் பிழையாக எண்ணியதாலேயே பெல் சமன்பாடு என்னும் பெயர் ஏற்பட்டது. இச்சமன்பாட்டுக்கான பொதுத் தீர்வைக் கண்டறிந்த முதல் ஐரோப்பியர் புரூங்கர் பிரபுவே என ஆய்லர் அறிந்திருந்த போதும், இது விடயத்தில் அவர் புரூங்கரையும், பெல்லையும் குழப்பிக்கொண்டார் எனத் தெரிகிறது.

வரலாறு

தோராயமாக கி.மு. 400 ஆம் ஆண்டுகளில் இந்திய மற்றும் கிரேக்க நாடுகளில் பெல் சமன்பாட்டின் n = 2 ஆக இருக்கும்,

x22y2=1

என்னும் நிலை மீதும், இதோடு நெருக்கமாகத் தொடர்புடைய,

x22y2=1

என்பதன் மீதும், ஆய்வுகள் இடம்பெற்றன. இவ்விரு சமன்பாடுகளும் 2 இன் வர்க்கமூலத்துடன் தொடர்புள்ளதாக இருந்ததாலேயே இவை ஆராயப்பட்டன.[1] x உம் y உம் இச் சமன்பாட்டுக்குப் பொருத்தமாக அமையும் நேர் முழுஎண்களாக இருந்தால், x/y என்பது √2இன் அண்ணளவாக்கம் ஆகும். இந்த அண்ணளவாக்கத்தில் வரும் எண்கள் x உம், y உம் பைதகோரியக் கணிதவியலாளர்களுக்குத் தெரிந்திருக்கிறது.

மேற்கோள்கள்

வார்ப்புரு:Reflist

"https://ta.wiki.beta.math.wmflabs.org/w/index.php?title=பெல்லின்_சமன்பாடு&oldid=781" இலிருந்து மீள்விக்கப்பட்டது