யங் டாபிலூ

testwiki இலிருந்து
Jump to navigation Jump to search

கணிதத்தில் யங் டாபிலூ (Young Tableau ) என்பது சேர்வியலிலும், சமச்சீர்குலத்தின் குறிகாட்டிக் கோட்பாட்டிலும் (Representation theory of the Symmetric Group), கணிசமாகப் பயன்படுத்தப்படும் ஒரு பொருள். எண் பிரிவினையில் பயன்படுத்தப் பட்டிருக்கும் ஃபெற்ற்ர்ஸ் படிமத்தில் புள்ளிகளுக்குப் பதில் ஒரு குறிப்பிட்டவிதிக்குட்பட்டு எண்களால் நிரப்பினால் அது யங் டாபிலூ எனப்படும். இருபதாவது நூற்றாண்டின் தொடக்கத்தில் ஆல்ஃப்ரெட் யங் என்பவர் சமச்சீர்குலத்தைப் பற்றிய ஆய்வுகளில் இவைகளை அறிமுகப்படுத்தியதோடல்லாமல், சமச்சீர்குலத்தின் குறிகாட்டிகளைக் கணிப்பதற்கு, இந்த டாபிலூக்களை இன்றியமையாதவை என்று காட்டினார்.

டாபிலூ வரையறை

λ N என்று கொள். இதனுடைய ஃபெற்றர்ஸ் படிமத்திலுள்ள புள்ளிகளுக்குப் பதில் நேர்ம முழு எண்கள்

கீழுள்ள விதிகளுட்பட்டு எழுதப்படட்டும்:

ஒவ்வொரு வரிசையிலும் இடமிருந்து வலமாகப்போக எண்கள் கண்டிப்பு ஏறுமுகமாக இருத்தல், மற்றும்
ஒவ்வொரு நிரலிலும் மேலிருந்து கீழ் போக எண்கள் கண்டிப்பு ஏறுமுகமாக இருத்தல்.

இப்படி உருவாக்கப்படும் எண்தொகுப்பிற்கு 'யங் டாபிலூ' என்று பெயர். எண் பிரிவினை μால், λ-வடிவ யங் டாபிலூ என்றும் சொல்லப்படும்.

கண்டிப்பு ஏறுமுகத்திற்குப் பதில் நிரல்களும் வரிசைகளும் இறங்குமுகமாக இல்லாதிருத்தல் என்ற விதிக்கு மட்டும் உட்பட்டால் அவ்வெண்தொகுப்பு 'பொதுமை யங் டாபிலூ' என்று குறிக்கப்படும்.

வரிசைகள் மட்டும் கண்டிப்பு ஏறுமுகமாக இருந்தால் அது வரிசைக்கண்டிப்பு டாபிலூ என்றும் நிரல்கள் மட்டும் கண்டிப்பு ஏறுமுகமாக இருந்தால் நிரல்கண்டிப்பு டாபிலூ என்றும் குறிக்கப்படும்.

எ.கா. (4,3,1) என்ற எண் பிரிவினைக்குகந்தபடி கீழே , நான்கு (4,3,1)-வடிவ டாபிலூக்கள் காட்டப்பட்டிருக்கின்றன:
யங் டாபிலூ:
12574576 ,
வரிசைக்கண்டிப்பு டாபிலூ:
12674564,
நிரல்கண்டிப்பு டாபிலூ:
12554476
பொதுமை யங் டாபிலூ:
13442552
ஒரு யங் டாபிலூவில் 1,2,3, ..., k ஆகிய k எண்கள் மட்டும் இருந்தால் அது k-கிரம இயல்நிலை டாபிலூ எனப்படும்.
எ.கா. இயல்நிலை டாபிலூ (4 3 1)-வடிவமுடையது:
12453687
இது 8-கிரம இயல்நிலை டாபிலூ. அதாவது, இதனுடைய கிரமம் (order) 8.

தளப்பிரிவினை

மேலேயுள்ள 'டாபிலூ' வரையறைகளில் 'ஏறுமுகம்' என்பதை 'இறங்குமுகம்' என்றும், 'இறங்குமுகம்' என்பதை 'ஏறுமுகம்' என்றும் மாற்றினால் கிடைக்கும் எண்தொகுப்பிற்கு 'λ-வடிவ தளப்பிரிவினை' என்று பெயர். 'நிரல் கண்டிப்பு தளப்பிரிவினை', 'வரிசை கண்டிப்பு தளப்பிரிவினை', 'யங் தளப்பிரிவினை', 'இயல்நிலை தளப்பிரிவினை' -- இவையெல்லாம் அதே பாங்கில் வரையறுக்கப்படும்.
கீழே ஐந்து (5 3 2 1)-வடிவ தளப்பிரிவினைகள் காட்டப்பட்டிருக்கின்றன
யங் தளபிரிவினை:
76431643322
வரிசை கண்டிப்பு தளப்பிரிவினை
76431732431
நிரல் கண்டிப்பு தளப்பிரிவினை:
77533544432
பொதுமை தளப்பிரிவினை:
77554732432
இயல்நிலை தளப்பிரிவினை:
1176431051928

டாபிலூ-தளப்பிரிவினை இருவழிக்கோப்பு

λ = (λ1, λ2, ... ,λp) N ;
μ = (μ1, μ2, ... ,μn) N
என்று கொண்டால் கீழுள்ள இரண்டு கணங்களுக்கும் ஓர் இருவழிக்கோப்பு உள்ளது. அவைகளின் பொதுவான எண்ணிக்கை அளவையை கோஸ்ட்கா நிலைப்பி என்று சொல்வர். அதன் குறியீடு
Kλμ
(a) μi பாகங்கள் i ஆகக்கொண்ட (i = 1,2, ..., n) λ-வடிவ நிரல் (முறையே, வரிசை) கண்டிப்பு டாபிலூ க்கள் எல்லாம் அடங்கிய கணம்;
(b) μi பாகங்கள் n-i+1 ஆகக்கொண்ட (i = 1,2, ..., n) λ-வடிவ நிரல் (முறையே, வரிசை) கண்டிப்பு தளப்பிரிவினைகள் எல்லாம் அடங்கிய கணம்.
ஏனென்றால் jnj+1 என்ற கோப்பு வேண்டியதைச்செய்கின்றது
எ.கா.λ = (32), μ = (2111) என்றால், Kλμ = 3, கீழே காட்டியபடி:
11324 44231

11234 44321

11423 44132

கோஸ்ட்கா நிலைப்பியைப் பற்றிய குனூத் (Knuth) தேற்றம்

λ,μ இரண்டும் எண் N இன் தளப்பிரிவினைகளென்றும், ν, μ இன் பாகங்களின் ஒரு வரிசைமாற்றம் என்றும் கொண்டால்,

Kλμ = Kλν.
எ.கா.:
λ = (542), μ = (4421), ν = (1244) என்று கொண்டு, μi பாகங்கள் i ஆகக்கொண்ட (i = 1,2,3,4) λ-வடிவ நிரல் கண்டிப்பு டாபிலூ க்களையும், νi பாகங்கள் i ஆகக்கொண்ட (i = 1,2,3,4) λ-வடிவ நிரல் கண்டிப்பு டாபிலூ க்களையும் கணக்கிட்டுப்பார்த்தால் இரு கணங்களிலும் நான்கே டாபிலூக்கள் கிடைப்பதைக்காணலாம்.

துணைநூல்கள்

D.E. Knuth. Permutations, Matrices & Generalised Young Tableaux. Pacific J. Math. 34 709-27 (1970)
R.P. Stanley. Theory and Application of Plane Partitions, I, II. Stud. Appl. Math. 50, 167-188, 259-279 (1971)
V. Krishnamurthy.Combinatorics - Theory and Applications.Ellis Horwood. 1986
"https://ta.wiki.beta.math.wmflabs.org/w/index.php?title=யங்_டாபிலூ&oldid=490" இலிருந்து மீள்விக்கப்பட்டது