விளிம்பு-கடப்புக் கோட்டுரு

testwiki இலிருந்து
Jump to navigation Jump to search

கோட்டுருவியலில், விளிம்பு கட்டுகளின் வரம்புகள் (edge-transitive graph) என்பது கீழுள்ள கட்டுப்பாட்டுக்குட்பட்ட கோட்டுரு G ஆகும்:

G கோட்டுருவின் எவையேனும் இரு விளிம்புகள் e1 மற்றும் e2 எனில்:

f(e1)=e2.  என்றவாறு f:E(G)E(G)  என்ற தன்னுருவாக்கம் G இன் இருக்குமானால் G ஒரு விளிம்பு-கடப்புக் கோட்டுரு என அழைக்கப்படும்.[1]

அதாவது, ஒரு கோட்டுருவின் தன்னுருவாக்கக் குலமானது கோட்டுருவின் விளிம்புகளின் மீது கடப்புத்தன்மையுடன் செயற்பட்டால் அக்கோட்டுரு விளிம்பு-கடப்புக் கோட்டுருவாக இருக்கும்.

பண்புகள்

கிரே கோட்டுரு - விளிம்பு-கடப்பு மற்றும் ஒழுங்கு கோட்டுரு. ஆனால் முனை-கடப்புக் கோட்டுரு அல்ல.

விளிம்பு-கடப்புக் கோட்டுருக்கள் இருகூறு முழு கோட்டுருக்களையும் (Km,n), சமச்சீர் கோட்டுருக்களையும் உள்ளடக்கியது.[1] இணைப்புள்ள சமச்சீர் கோட்டுருக்கள் முனை-கடப்புத்தன்மையுடையது. ஆனால் பொதுவாக விளிம்பு-கடப்புக் கோட்டுருக்கள் முனை-கோட்டுருக்களாக இருக்க வேண்டிய அவசியமில்லை. விளிம்பு-கடப்புடையதாக ஆனால் முனை-கடப்பற்ற கோட்டுருக்களுக்கு ஒரு எடுத்துக்காட்டு கிரே கோட்டுருவாகும். இவ்வாறு விளிம்பு-கடப்புடையதாக ஆனால் முனை-கடப்பற்றதாகவுள்ள கோட்டுருக்கள் இருகூறு கோட்டுருக்களாக இருக்கும்.[1] மேலும் அவற்றை இரு நிறங்களைக் கொண்டு மட்டுமே நிறந்தீட்ட முடியும்.

ஒரு விளிம்பு-கடப்புக் கோட்டுரு ஒழுங்கு கோட்டுருவாக இருந்து முனை-கடப்பற்றதாக இருக்குமானால் அது அரை-சமச்சீர் கோட்டுரு என அழைக்கப்படும். கிரே கோட்டுரு இதற்கும் எடுத்துக்காட்டாக அமையும்.

முனை-கடப்பற்ற ஒவ்வொரு விளிம்பு-கடப்புக் கோட்டுருவும் இருகூறு கோட்டுருவாக இருக்கும். இத்தகைய கோட்டுருக்கள் ஒன்று அரை-சமச்சீரானதாக அல்லது ஈரொழுங்கானதாக (biregular).[2]

ஒரு விளிம்பு-கடப்பு கோட்டுருவின் முனை இணைப்பு அதன் படியின் சிறும அளவுவாக இருக்கும்.[3]

மேற்கோள்கள்

வார்ப்புரு:Reflist

வெளியிணைப்புகள்