முற்றொப்பு எண்

testwiki இலிருந்து
imported>InternetArchiveBot பயனரால் செய்யப்பட்ட 10:14, 20 திசம்பர் 2023 அன்றிருந்தவாரான திருத்தம் (Bluelink 1 book for விக்கிப்பீடியா:மெய்யறிதன்மை (20231219)) #IABot (v2.0.9.5) (GreenC bot)
(வேறுபாடு) ← பழைய திருத்தம் | ஆக அண்மைய திருத்தம் (வேறுபாடு) | புதிய திருத்தம் → (வேறுபாடு)
Jump to navigation Jump to search
பகுதி 6 உடன் ஒரு முக்கோணம்.

கணிதத்தில், ஒரு செங்கோண முக்கோணத்தின் மூன்று பக்கங்களும் விகிதமுறு எண்களாக இருந்து, அம்முக்கோணத்தின் பரப்பளவானது ஒரு நேர் முழு எண்ணாக இருக்குமானால், பரப்பளவாக இருக்கும் அந்த நேர் முழுஎண் முற்றொப்பு எண் அல்லது முற்றிசைவு எண் அல்லது சர்வசம எண் (congruent number) என அழைக்கப்படுகிறது[1]. முற்றொப்பு எண்களின் பொதுமைப்படுத்தப்பட்ட வரையறையானது, இதே பண்பினைக் கொண்ட விகிதமுறுஎண்களையும் முற்றொப்பு எண்களாகக் கொள்கிறது.[2]

எடுத்துக்காட்டுகள்:

  • 20/3, 3/2, 41/6 (செம்பக்கம்) ஆகிய மூன்று விகிதமுறு எண்களைப் பக்கங்களாகக் கொண்ட செங்கோண முக்கோணத்தின் பரப்பு 5 சதுர அலகுகள் என்பதால், எண் 5 ஒரு முற்றொப்பு எண்.

இச் செங்கோண முக்கோணத்தின் பரப்பு:

12ab=12×203×32=5
  • இதேபோல கணக்கிட, 3, 4, 5 பக்கங்களைக் கொண்ட செங்கோண முக்கோணத்தின் பரப்பு 6 சதுர அலகுகள் என்பதால், எண் 6 ஒரு முற்றொப்பு எண்.

தொடர்முறை

எண்ணற்ற எண் அட்டவணை: n ≤ 120
வார்ப்புரு:OEIS
—: அல்லாத எண்ணற்ற எண்
C: சதுர-இலவச சச்சரவு எண்
Q: சதுரக் காரணி கொண்ட எண்ணற்ற எண்
n 1 2 3 4 5 6 7 8
C C C
n 9 10 11 12 13 14 15 16
C C C
n 17 18 19 20 21 22 23 24
Q C C C Q
n 25 26 27 28 29 30 31 32
Q C C C
n 33 34 35 36 37 38 39 40
C C C C
n 41 42 43 44 45 46 47 48
C Q C C
n 49 50 51 52 53 54 55 56
Q C Q C Q
n 57 58 59 60 61 62 63 64
Q C C Q
n 65 66 67 68 69 70 71 72
C C C C
n 73 74 75 76 77 78 79 80
C C C Q
n 81 82 83 84 85 86 87 88
Q C C C Q
n 89 90 91 92 93 94 95 96
Q C C C Q
n 97 98 99 100 101 102 103 104
C C C
n 105 106 107 108 109 110 111 112
C C C Q
n 113 114 115 116 117 118 119 120
Q Q C C Q

முற்றொப்பு எண்கள் 5 இல் இருந்து தொடங்குகின்றன. முற்றொப்பு எண்ககளின் தொடர்முறை:

5, 6, 7, 13, 14, 15, 20, 21, 22, 23, 24, 28, 29, 30, 31, 34, 37, 38, 39, 41, 45, 46, 47, … வார்ப்புரு:OEIS

முடிவுகள்

  • q ஒரு முற்றொப்பு எண்; மேலும் s ஒரு இயல் எண் எனில், s2q ஒரு முற்றொப்பு எண்ணாகும். இதிலிருந்து, சுழியற்ற விகிதமுறு எண் q ஆனது, */*2 என்ற குலத்தில், தனது எச்சத்தைப் பொறுத்துதான் முற்றொப்பு எண்ணாக இருக்கும் என்பதை அறியலாம்.

இந்த குலத்தின் ஒவ்வொரு எச்சத் தொகுதியிலும் ஒரேயொரு வர்க்கக்காரணியற்ற முழுஎண் மட்டுமே இருக்கும் என்பதால் முற்றொப்பு எண்களைக் காண முற்படும்போது வர்க்கக்காரணியற்ற நேர் முழுஎண்களில் முயற்சிக்கலாம்.

  • பெர்மாவின் பெயரால் அழைக்கப்படும் பெர்மாவின் செங்கோண முக்கோணத் தேற்றத்தின்படி, வர்க்க எண்கள் முற்றொப்பு எண்களாக இருக்காது.
  • p என்ற பகா எண்ணுக்குக் கீழ்க்காணும் முடிவுகள் உண்மையாகும் எனக் கண்டறியப்பட்டுள்ளது[3]:
  • p ≡ 3 (மாடுலோ 8) எனில், p முற்றொப்பு எண் அல்ல; ஆனால் 2p ஒரு முற்றொப்பு எண்ணாகும்.
  • p ≡ 5 (மாடுலோ 8) எனில், p ஒரு முற்றொப்பு எண்.
  • p ≡ 7 (மாடுலோ 8) எனில், p , 2p இரண்டுமே முற்றொப்பு எண்கள்.
  • மேலும் 5, 6, 7 (mod 8) ஆகிய முற்றொப்புத் தொகுதிகள் ஒவ்வொன்றிலும் முடிவில்லா எண்ணிக்கையில் வர்க்கக்காரணிகளற்ற முற்றொப்பு எண்கள் உள்ளன என்றும் கண்டறியப்பட்டுள்ளது. இந்த முற்றொப்பு எண்கள் ஒவ்வொன்றிலும் உள்ள பகாக் காரணிகளின் எண்ணிக்கை k ஆகும். (இங்கு k ஏதேனுமொரு எண்).[4]

மேற்கோள்கள்

வார்ப்புரு:Reflist

"https://ta.wiki.beta.math.wmflabs.org/w/index.php?title=முற்றொப்பு_எண்&oldid=1019" இலிருந்து மீள்விக்கப்பட்டது