குலம் (கணிதம்)

testwiki இலிருந்து
Jump to navigation Jump to search

கணிதத்தில், குறிப்பாக இயற்கணிதத்தில், குலம் (Group) என்ற கணித அமைப்பு ஒரு அடிப்படைக்கருத்தாகும். அது கணிதத்தில் மட்டுமல்ல, இயற்பியல், வேதியியல், புள்ளியியல் முதலிய பல அறிவியல் துறைகளில் இன்றியமையாததாகப் பயன்படுத்தப்படும் ஒரு வேர்க்கருத்து. நுண்புல இயற்கணிதத்தில் ஒரு பிரிவாக அது பட்டியலிடப்பட்டாலும், கணிதத்தின் எல்லாப் பிரிவுகளிலும் அடி நீரோட்டமாகப் பாயும் அடித்தளத் தத்துவமாகும்.

எளிமையான மேலோட்டம்

எத்துறையிலும் எந்தச்செயல்பாட்டைப்பற்றிப் பேசப்பட்டாலும் நாம் கேட்கக்கூடிய பொதுக்கேள்விகளில் மூன்றை முக்கியமாகச் சொல்லலாம்.

  • அச்செயல்பாடு மற்ற செயல்பாடுகளுடன் ஒட்டி உறவாடுமா, அல்லது வெட்டி தனியாய் நிற்குமா?
  • அச்செயல்பாட்டை நிறைவேற்றினபிறகு அதை அவிழ்க்கமுடியுமா? அதாவது அதை பின்னோக்கி இயங்கவைக்கமுடியுமா? இன்னும் சொல்லப்போனால அது செயற்படுவதற்கு முன்னிருந்த நிலைக்கு திரும்பிப் போகமுடியுமா?
  • எதையும் மாற்றாத நிலை அச்செயல்பாட்டில் அடங்குமா?

இம்மூன்று கேள்விகளுக்கும் 'உண்டு, முடியும்' என்ற நேர்ம விடைகள் கிடைக்கும்போதெல்லாம், குலம் என்ற கணிதக்கருத்து அங்கு இழையோடிக் கொண்டிருக்கிறது என்று கண்டுகொள்ளலாம்.

துல்லியமான வரையறை

G என்ற ஒரு கணத்தை எடுத்துக்கொள்வோம். அதனில் (*) என்ற ஓர் ஈருறுப்புச் செயலி கொடுக்கப்பட்டதாகக் கொள்வோம். அதாவது G இலுள்ள a,b என்ற எந்த இரண்டு உறுப்புகளுக்கும் (a*b) என்றொரு உறுப்பு அவைகளுடன் உறவுபடுத்தப் பட்டு G இலேயே இருப்பதாகப் பொருள். இப்பொழுது (*) என்ற செயலிக்கு G ஒரு குலம் ஆகிறது என்பதற்கு இலக்கணம் கீழ்க்கண்ட மூன்று நிபந்தனைகள் நிறைவேறுகின்றன என்பதே:

(கு 1) (ஒட்டுறவு விதி): G இலுள்ள எந்த a,b,c க்கும் a*(b*c)=(a*b)*c.

(கு 2) (ஒற்றொருமை இருப்பு): G இல் e என்ற ஓர் உறுப்பு கீழ்க்கண்ட பண்புடன் உள்ளது:

G இலுள்ள எந்த a க்கும் e*a=a=a*e.

(கு 3) (நேர்மாறு இருப்பு): G இலுள்ள ஒவ்வொரு a க்கும் a1 என்று பெயரிடக்கூடிய ஓர் உறுப்பு G இல் கீழ்க்கண்ட பண்புடன் உள்ளது:

a*a1=e=a1*a.

இதை (G, *) ஒரு குலம் என்றோ, சந்தர்ப்பச்சூழலிலிருந்து செயலி என்ன என்று தெரிவதாக இருந்தால்,(*)ஐக்குறிக்காமலேயே, G ஒரு குலம் என்றோ சொல்வது வழக்கம்.

(கு 1), (கு 2), (கு 3) க்கு மேல் கீழ்க்கண்ட (கு 4) என்ற நிபந்தனையும் நிறைவேற்றப்பட்டால் அந்தக்குலம் பரிமாற்றுக் குலம் (Commutative Group) எனப்படும்:

(கு 4) (பரிமாற்று விதி): G இலுள்ள எந்த a,b, க்கும் a*b=b*a.

பரிமாற்றுவிதி இல்லாத சூழ்நிலையில், அதாவது, முதல் மூன்று நிபந்தனைகள் மட்டும் நிறைவேற்றப்படும் அமைப்புகளை பரிமாற்றா குலம் என்று சொல்லவேண்டும். அதாவது, பரிமாற்றா குலத்தில் a*b=b*a என்ற விதி ஏதாவது இரண்டு உறுப்புகளுக்காவது செல்லாமல் இருக்கும்.

பரிமாற்றுக்குலத்தை 'ஏபெல் குலம்' என்றும் பரிமாற்றா குலத்தை 'ஏபெலல்லாத குலம்' என்றும் சொல்வதுண்டு. ஏபெல் என்ற கணித இயலர் நார்வேயில் 19வது நூற்றாண்டின் தொடக்கத்தில் உலகமறிந்த அளவில் பல கண்டுபிடிப்புகளைக் கண்டவர்.

மொத்த உறுப்புகளின் எண்ணிக்கை ஒரு முடிவுறு எண்ணாகுமானால், அக்குலம் முடிவுறு குலம் என்றும், அப்படியில்லையானால் முடிவுறாக்குலம் என்றும் கூறப்படும்.

எடுத்துக்காட்டுகளாக குறிப்பிடத்தக்க குலங்கள்

  • 𝐐,𝐑,𝐂 இவைகள் மூன்றும் கூட்டலுக்கு பரிமாற்றுக் குலங்கள். ஒவ்வொன்றுக்கும் ஒற்றொருமை சூனியம். ஒவ்வொன்றிலும்a இன் நேர்மாறு= a.
  • நேர்ம எண்களை மாத்திரம் கொண்ட 𝐐*, 𝐑*, 𝐂* இவைகள் மூன்றும் பெருக்கலுக்கு பரிமாற்றுக் குலங்கள். ஒவ்வொன்றுக்கும் ஒற்றொருமை 1. ஒவ்வொன்றிலும் a இன் நேர்மாறு 1/a.
  • ஏதாவதொரு களம் 𝐅 இலிருந்து வரும் உறுப்புக்களைக் கொண்டm×n அணிகளெல்லாம் அடங்கிய கணம் அணிக்கூட்டலுக்கு ஒரு பரிமாற்றுக் குலமாகும். இங்கு ஒற்றொருமை சூனிய அணி. (a)m,n இன் நேர்மாறு = (a)m,n.
  • ஏதாவதொரு களம் 𝐅 இலிருந்து வரும் உறுப்புக்களைக் கொண்டn×n வழுவிலா அணிகளெல்லாம் அடங்கிய கணம் அணிப்பெருக்கலுக்கு ஒரு பரிமாற்றாக் குலமாகும். இங்கு ஒற்றொருமை எல்லா மூலைவிட்டங்களும் 1 ஆக இருக்கும் முற்றொருமை அணி. இதனில் உள்ள எல்லா அணிகளுக்கும் நேர்மாறு இருப்பினும் அவைகளைக் கண்டுபிடிப்பதென்பது அணிக்கோட்பாட்டின் ஒரு தலையாய பிரச்சினையாகும். 𝐅,𝐑 ஆகவோ 𝐂 ஆகவோ இருந்தால் இந்த குலம் GL(n, 𝐑), அல்லது GL(n,𝐂) என்ற குறியீட்டுடன்,பொது நேரியற்குலம் என்ற பெயரால் அழைக்கப்படும்.
  • n பொருட்கள் உள்ள கணத்தின் வரிசைமாற்றங்கள் அவைகளுடைய சேர்வை என்ற செயல்பாட்டிற்கு Sn என்ற வரிசைமாற்றக்குலமாகிறது. இங்கு ஒற்றொருமை
(123n123n)
என்ற முற்றொருமை வரிசைமாற்றம்.ஒவ்வொரு வரிசைமாற்றத்திற்கும், அதை அணியாக எழுதி முதல் வரிசையையும் இரண்டாவது வரிசையையும் ஒன்றுக்கொன்று பரிமாற்றி எழுதினால் நேர்மாறு வரிசைமாற்றம் கிடைக்கும்.
குறிப்பு. n3 ஆனால், Sn ஒரு பரிமாற்றாக்குலம். Sn களுக்கு பொதுப்பெயர் 'n-கிரமச்சமச்சீர்குலம்' (Symmetric Group of order n)
  • மாடுலோ எண்கணிதத்தில் ஒரு குறிப்பிட்ட முழு எண் n உடன் உறவுபடுத்தப்பட்ட {0,1,2,3,...,n1(modn)} கணம் மாடுலோ கூட்டலுக்கு ஒரு குலம் ஆகும். இங்கு ஒற்றொருமை 0(modn). m இன் நேர்மாறு (nm)(modn).
  • மாடுலோ எண்கணிதத்தில் ஒரு குறிப்பிட்ட பகா எண் p உடன் உறவுபடுத்தப்பட்ட {1,2,...p1(modp)} கணம் மாடுலோ பெருக்கலுக்கு ஒரு குலம் ஆகும். இங்கு ஒற்றொருமை 1(modp). ஒரு குறிப்பிட்ட m இன் நேர்மாறு அவ்வப்போது கண்டுபிடிக்கவல்லது.
  • {1,i,i,1}: நான்கு சிக்கலெண்களைக்கொண்ட இக்கணம் சிக்கலெண் பெருக்கலுக்கு ஒரு குலம். இங்கு ஒற்றொருமை 1. i யும் i யும் நேர்மாறுகள். -1 க்கு நேர்மாறு அதுவே.
  • மெய்யெண்களைக்கொண்ட M என்ற சதுர அணி MT=M1 என்ற பண்பைக் கொண்டிருக்குமானால் அது செங்குத்து அணி எனப்படும். n×n செங்குத்து அணிகளெல்லாம் அணிப்பெருக்கலுக்கு ஒரு குலமாகும். இக்குலத்திற்கு n-கிரமச்செங்குத்துக்குலம் என்று பெயர். இதற்குக் குறியீடு O(n).
  • சிக்கலெண்களைக்கொண்ட U என்ற சதுர அணி U*T=U1 என்ற பண்பைக்கொண்டிருக்குமானால் அது அலகுநிலை அணி எனப்படும். இங்கு U* என்பது U வின் இணையியஅணி. U*T என்பது U வின் இடமாற்று இணையிய அணி. n×n அலகுநிலை அணிகளெல்லாம் அணிப்பெருக்கலுக்கு ஒரு குலமாகும். இக்குலத்திற்கு n-கிரம அலகுநிலைக்குலம் என்று பெயர். இதற்குக் குறீயீடு: U(n).

இவற்றையும் பார்க்கவும்

"https://ta.wiki.beta.math.wmflabs.org/w/index.php?title=குலம்_(கணிதம்)&oldid=201" இலிருந்து மீள்விக்கப்பட்டது