சிறப்பு சார்புகள்

testwiki இலிருந்து
imported>Kanags பயனரால் செய்யப்பட்ட 11:56, 8 சனவரி 2024 அன்றிருந்தவாரான திருத்தம்
(வேறுபாடு) ← பழைய திருத்தம் | ஆக அண்மைய திருத்தம் (வேறுபாடு) | புதிய திருத்தம் → (வேறுபாடு)
Jump to navigation Jump to search

சிறப்பு சார்புகள் (Special functions) என்பது குறிப்பிட்ட கணித சார்புகள் ஆகும். அவை கணித குறியீடுகள், சார்புகளின் பகுப்பாய்வு, வடிவியல், இயற்பியல் வேறு பயன்பாடுகளிலும் அவற்றின் முக்கியத்துவம் காரணமாக அதிகமாகவோ அல்லது குறைவாகவோ நிறுவப்பட்ட பெயர்களையும் குறியீடுகளையும் கொண்டுள்ளன.

இச் சொல்லானது ஒருமித்த கருத்துடன் வரையறுக்கப்பட்டது. இதற்க்கான பொதுவான முறையான வரையறை ஏதும் இல்லை, ஆனால் கணித சார்புகளின் பட்டியலில் சிறப்பு என ஏற்றுக்கொள்ளப்படும் சார்புகள் பல இதில் உள்ளன.

சிறப்பு சார்புகளின் அட்டவணை

பல சிறப்பு சார்புகள் வகைக்கெழு சமன்பாடுகளின் தீர்வுகளாகத் தோன்றும் அல்லது நுண்கணிதங்களின் தொடக்க- சார்புகளாகும் .[1] [2] ஆகவே, நுண்கணிதங்களின் அட்டவணைகள் பொதுவாக சிறப்பு சார்புகளின் விளக்கங்களை உள்ளடக்கியுள்ளது, மேலும் சிறப்பு சார்புகளின் அட்டவணைகள் மிக முக்கியமான நுண்கணிதங்களை உள்ளடக்குகின்றன. சில சிறப்பு சார்புகள் நுண்கணிதத்தின் குறைந்தபட்ச சார்புகளை குறிக்கிறது.ஆகவே இயற்பியல் மற்றும் கணிதம் ஆகிய இரண்டிற்கும் வகைக்கெழு சமன்பாடுகளின் சமச்சீர் தன்மைகள் இன்றியமையாததாக இருக்கிறது. சிறப்பு சார்புகளின் கொள்கையானது லீ குலம் , லீ இயற்கணிதம் மேலும் கணித இயற்பியலில் உள்ள சில தலைப்புகளுடன் நெருக்கமாக தொடர்புடையது. பொதுவாக குறியிடல் கணக்கீட்டு இயந்திரங்கள் பெரும்பாலான சிறப்பு சார்புகளை அங்கீகரிக்கின்றன.

சிறப்பு சார்புகளுக்கு பயன்படுத்தப்படும் குறிப்பீடுகள்

சர்வதேச குறியீடுகளுடன் நிறுவப்பட்ட சிறப்பு சார்புகள் சைன்(sin), கோசைன் (cos), படிக்குறிச் சார்பு (exp), மற்றும் பிழைச் சார்பு (erfஅல்லது erfc)

கீழ்க்குறியீடு பெரும்பாலும் தருமதிப்புகளை குறிக்கப் பயன்படுத்தப்படுகின்றன, பொதுவாக முழு எண்களை, ஒரு சில சந்தர்ப்பங்களில், அரைப்புள்ளி (;) அல்லது பின்சாய்வு (\) கூட பிரிப்பானாகப் பயன்படுத்தப்படுகிறது. இந்த வகையில், நெறிப்பாட்டு மொழிகளுக்கான மொழிபெயர்ப்பு தெளிவின்மையையும் குழப்பத்தையும் வழிவகுக்கும்.

கீழ்க்குறியீடுகள் என்பது அடுக்கேற்றம் மட்டுமல்ல, ஒரு சார்பு மாற்றத்தையும் குறிக்கலாம். எடுத்துக்காட்டுகள் (குறிப்பாக முக்கோணவியல் மற்றும் அதிபரவளையச் சார்புகளுடன் ) பின்வருமாறு:

  • cos3(x) என்பது (cos(x))3 க்கு பதிலாக.
  • cos2(x)என்பது (cos(x))2 க்கு பதிலாக, எப்போதும் எழுதக் கூடாத்து cos(cos(x))
  • cos1(x) என்பது arccos(x)க்கு பதிலாக,ஆனால் எழுதக் கூடாது(cos(x))1; இது பொதுவாக மிகவும் குழப்பத்தை ஏற்படுத்துகிறது, ஏனெனில் இந்த கீழ்க்குறியீடுகளின் பொருள் மற்றவற்றுடன் முரணானது.

சிறப்பு சார்புகளின் மதிப்பீடு

பெரும்பாலான சிறப்பு சார்புகள் ஒரு சிக்கலான மாறியின் செயல்பாடாகக் கருதப்படுகின்றன. அவை பகுமுறைச் சார்பு ஒருமைப்பாடுகள் மற்றும் வெட்டுக்கள் விவரிக்கப்பட்டுள்ளன; வகைக்கெழு மற்றும் நுண்கணித குறிப்புகளை அறிந்து கொள்ள பயன்படுகின்றன. மேலும் டெய்லர் தொடர் அல்லது அணுகுவழித் தொடரின் விரிவாக்கம் கிடைக்கிறது. கூடுதலாக, சில நேரங்களில் மற்ற சிறப்பு சார்புகளுடன் உறவுகள் உள்ளன; ஒரு சிக்கலான சிறப்பு சார்புகளின் எளிமையான சார்புகளின் அடிப்படையில் வெளிப்படுத்தலாம். மதிப்பீட்டிற்கு பல்வேறு குறிப்புகள் பயன்படுத்தப்படலாம். ஒரு சார்பை மதிப்பிடுவதற்கான எளிய வழி அதை டெய்லர் தொடராக விரிவாக்குவதாகும். இருப்பினும், அத்தகைய குறிப்புகள் மெதுவாக அல்லது இல்லாமல் இருக்கலாம். நெறிப்பாட்டு மொழிகளில், பகுத்தறிவு தோராயங்கள் பொதுவாகப் பயன்படுத்தப்படுகின்றன, இருப்பினும் அவை சிக்கலான மெய்புனையெண்ணின் கோணவீச்சு மோசமாக உள்ளது.

சிறப்பு சார்புகளின் வரலாறு

செவ்வியல் கொள்கை

பதினெட்டாம் நூற்றாண்டில் முக்கோணவியல் மற்றும் அடுக்கேற்றச் சார்புகள் முறைப்படுத்தப்பட்டு ஒருங்கிணைக்கப்பட்டது.இந் நிலையில், சிறப்புச் சார்புகளின் முழுமையான மற்றும் ஒருங்கிணைந்த கோட்பாட்டிற்கான தேடல் பத்தொன்பதாம் நூற்றாண்டிலிருந்து தொடர்கிறது. 1800-1900 ஆண்டில் சிறப்புச் சார்புக் கோட்பாட்டின் உயர்நிலையான நீள்வட்டச் சார்புகளின் கோட்பாடு பற்றி ஜூல்ஸ் டேனரி மற்றும் ஜூல்ஸ் மோல்க் [3]ஆகியோரின் முழுமையான ஆய்வுகள், கோட்பாட்டின் அனைத்து அடிப்படை அடையாளங்களையும் கண்டறியப்பட்டது. பகுமுறைச் சார்பு கோட்பாட்டின் படி சிக்கலெண் பகுப்பாய்வு அடிப்படையில் பயன்படுத்தி விளக்கமளிக்கப்பட்டது. நூற்றாண்டின் இறுதியில் கோளவொத்திசையங்கள் பற்றிய மிக விரிவான ஆய்வுரை நடந்தது

சமகால கோட்பாடுகள்

செங்குத்து பல்லுறுப்புக்கோவைகளின் நவீன கோட்பாடு ஒரு திட்டவட்டமானதுமான வரம்பிற்குட்பட்ட செயல் இலக்கை கொண்டது. வானியல் மற்றும் கணித இயற்பியலில் பெலிக்ஸ் க்ளீன் முக்கியமானதாகக் கருதப்பட்ட மீபெருக்கல் தொடர், ஒரு சிக்கலான கோட்பாடாக மாறியது,[4] பின்னர் கருத்தியல் சீரமைவு தேவைப்பட்டது. லீ குலங்கள் மற்றும் குறிப்பாக அவற்றின் சார்புக் கோட்பாடு, பொதுவாக ஒரு கோள சார்பு பொதுவாக இருக்கும் என்பதை விளக்குகிறது; 1950 முதல் கிளாசிக்கல் கோட்பாட்டின் கணிசமான பகுதிகளை லீ குலங்களின் அடிப்படையில் மறுவடிவமைக்க முடியும். மேலும், இயற்கணித சேர்க்கைகளின் வேலை கோட்பாட்டின் பழைய பகுதிகளில் ஆர்வத்தை மீட்டெடுத்தது. இயன் ஜி. மெக்டொனால்டின் அனுமானங்கள், வழக்கமான சிறப்புச் சார்பு சுவையுடன் பெரிய மற்றும் செயலில் உள்ள புதிய துறைகளைத் திறக்க உதவியது. சிறப்புச் சார்புகளுக்கான ஆதாரமாக வகையீட்டுச் சமன்பாடுளைத் தவிர வேறுபாடு சமன்பாட்டு வேறுபாடு அவற்றின் இடத்தைப் பெறத் தொடங்கியுள்ளன.

எண் கோட்பாட்டில் சிறப்பு கள்

எண் கோட்பாட்டில், குறிப்பிட்ட டிரிச்ழ்லெட் தொடர்கள் மற்றும் மட்டு வடிவங்கள் போன்ற சில சிறப்பு சார்புகள் பாரம்பரியமாக ஆய்வு செய்யப்பட்டு உள்ளன. சிறப்பு சார்பு கோட்பாட்டின் கிட்டத்தட்ட அனைத்து அம்சங்களும் அங்கு பிரதிபலிக்கின்றன, மேலும் விகாரமான மூன்சைன் கோட்பாட்டிலிருந்து புதிய முடிவுகள் வெளிவந்தன.

அணியின் தருமதிப்புகளில் சிறப்பு சார்புகள்

பல சிறப்பு சார்புகளின் நேரிணைகள் நேர் வரையறுக்கப்பட்ட அணிகளின் வெளியில் வரையறை செய்யப்படுகின்றன. அவற்றில் அட்லி செல்பெர்கின் சார்புகளின் வகைகள் ஆற்றல் சார்பு,வார்ப்புரு:Sfn பல்மாறி காமா சார்பு, வார்ப்புரு:Sfn மற்றும் பெசல் சார்பு வார்ப்புரு:Sfn ஆகியன.

கணித சார்புகளில் தேசிய தொழில் நுட்ப செந்தர வரையேட்டு நிறுவனத்தின் மின் நூலகத்தில் அணியின் தருமதிப்புகளில் பல சிறப்பு சார்புகளை உள்ளடக்கிய ஒரு பகுதி உள்ளது. [5]

ஆய்வாளர்கள்

இவற்றையும் பார்க்க

மேற்கோள்கள்

வார்ப்புரு:Reflist

நூல் பட்டியல்

வெளி இணைப்புகள்

வார்ப்புரு:Authority control

"https://ta.wiki.beta.math.wmflabs.org/w/index.php?title=சிறப்பு_சார்புகள்&oldid=1723" இலிருந்து மீள்விக்கப்பட்டது