சேர்ப்புப் பண்பு

testwiki இலிருந்து
imported>Booradleyp1 பயனரால் செய்யப்பட்ட 07:48, 25 நவம்பர் 2024 அன்றிருந்தவாரான திருத்தம் (removed Category:ஈருறுப்புச் செயல்கள்; added Category:இருமச் செயல்களின் பண்புகள் using HotCat)
(வேறுபாடு) ← பழைய திருத்தம் | ஆக அண்மைய திருத்தம் (வேறுபாடு) | புதிய திருத்தம் → (வேறுபாடு)
Jump to navigation Jump to search

கணிதத்தில், சேர்ப்புப் பண்பு (Associative property) என்பது சில ஈருறுப்புச் செயலிகளுக்குரிய பண்பாகும். ஒரு கோவையில் ஒரே செயலியானது வரிசையாகப் பலமுறை நிகழ்த்தப்படும் போது செயலியின் வரிசையை மாற்றினாலும் இறுதி முடிவுகள் மாறாமல் இருந்தால் அச்செயலியானது சேர்ப்புப் பண்புடையது அல்லது சேர்ப்புச் செயலி எனப்படுகிறது. அதாவது ஒரே கோவையில் அடைப்புக் குறியீட்டினை இடமாற்றம் செய்வதால் அக் கோவையின் இறுதி மதிப்பு மாறாது.

எடுத்துக்காட்டாக,

  • (5+2)+1=5+(2+1)=8

இச்சமன்பாட்டில் அடைப்புக் குறியீடுகள் இடம் மாறியிருந்தாலும் மதிப்பு மாறவில்லை. (இடது பக்கம் உள்ள கோவையில் முதலில் 5, 2 ஐக் கூட்டி வரும்விடையோடு 1 ஐக் கூட்ட வேண்டும். வலது பக்க கோவையில் முதலில் 2,1 ஐக் கூட்டி கிடைக்கும் விடையோடு 5 ஐக் கூட்ட வேண்டும்.) எனவே அனைத்து மெய்யெண்களின் கூட்டலுக்கும் இது பொருந்தும் என்பதால் மெய்யெண்களின் கூட்டல் ஒரு சேர்ப்புச் செயலியாகும்.

  • 5×(5×3)=(5×5)×3=75

இச்சமன்பாட்டிலும் அடைப்புக் குறியீடுகளை இடம் மாற்றுவதால் மதிப்பு மாறவில்லை. (இடது பக்கம் முதலில் 5யும் 3யும் பெருக்கி வரும் விடையோடு 5 ஐப் பெருக்க வேண்டும். வலது பக்கம் 5 யும் 5 யும் பெருக்கி வரும் விடையோடு 3 ஐப் பெருக்க வேண்டும்.) எனவே அனைத்து மெய்யெண்களின் பெருக்கலுக்கும் இது பொருந்தும் என்பதால் மெய்யெண்களின் பெருக்கல் ஒரு சேர்ப்புச் செயலியாகும்.

சேர்ப்புப் பண்பினையும் பரிமாற்றுப் பண்பினையும் குழப்பிக் கொள்ளக்கூடாது. சேர்ப்புச் செயலியில் செயலியைச் செய்யும் வரிசை மாற்றப்படுகிறது. பரிமாற்றுப் பண்பிலோ செயலுட்படுத்திகளின் வரிசை மாற்றப்படுகிறது.

(5+2)+1=5+(2+1)=8 ( சேர்ப்புப் பண்பு)
(5+2)+1=(2+5)+1=8 (பரிமாற்றுப் பண்பு)

கணிதத்தில் சேர்ப்புச் செயலிகள் நிறையவே உள்ளன. அரைக்குலம், வகுதிகள் (categories) போன்ற இயற்கணித அமைப்புகளின் செயலிகள் சேர்ப்புச்செயலிகள்தான். ஆயினும் வெக்டர்களின் குறுக்குப் பெருக்கல் போன்ற சேர்ப்புப் பண்பு இல்லாத சில முக்கிய கணிதச்செயல்களும் உள்ளன.

வரையறை

கணம் Sன் மீது வரையறுக்கப்பட்ட ஈருறுப்புச் செயலி * ஆனது,

(x*y)*z=x*(y*z)for allx,y,zS.

என்ற சேர்ப்பு விதியை நிறைவு செய்தால் அது சேர்ப்புச்செயலி எனப்படும்.

எடுத்துக்காட்டாக,

  • (xy)z=x(yz)=xyzfor all x,y,zS. என சேர்ப்பு விதியை நிறைவு செய்வதால் பெருக்கல் ஒரு சேர்ப்புச்செயலியாகும்.
  • சார்புகளின் குறியீட்டில் சேர்ப்பு விதி:
f(f(x,y),z)=f(x,f(y,z))

செயலி * ஆனது ஒரு கோவையில் எத்தனைமுறை வேண்டுமானாலும் வரலாம். * சேர்ப்புச் செயலியாக இருக்கும்போது அடைப்புக்குறிகளை நீக்கிவிட்டு xyz என்றும் எழுதலாம்.

சேர்ப்பு விதியில், கோவையில் உள்ள செயலியின் வரிசைகளை மட்டும் தான் மாற்றலாமே தவிர, செயலுட்படுத்திகளின் வரிசையை மாற்றிவிடக்கூடாது

மூவுறுப்புச் செயலிகளின் சேர்ப்புப் பண்பு:

(abc)de=a(bcd)e=ab(cde)

சேர்ப்புப் பண்பினை n உறுப்புச் செயலிகளுக்கும் விரிவுபடுத்தலாம்.[1]

எடுத்துக்காட்டுகள்

  • எழுத்துத் சரங்களைத் தொடுக்கும் செயல் (string concatenation) ஒரு சேர்ப்புச் செயலியாகும.

அம்மா இங்கே வா என்ற சொற்றொடரைத் தொடுக்கும் போது அதன் மூன்று சரங்களில் முதல் இரண்டு சரங்களான அம்மா, இங்கே ஆகிய இரண்டையும் முதலில் தொடுத்துப் பின் அதனோடு மூன்றாவது சரமான வா என்பதைத் தொடுக்கலாம். அல்லது முதலில் 2வது, 3வது சரங்களான இங்கே, வா - இரண்டையும் தொடுத்துவிட்டுப் பின் அதோடு முதல் சரம் அம்மா வைத் தொடுக்கலாம். இருவிதத்திலும் கிடைக்கும் சொற்றொடர்கள் ஒன்றாகத்தான் இருக்கும். ஆனால் இச்செயலி பரிமாற்றுச் செயலி கிடையாது.

(x+y)+z=x+(y+z)=x+y+z(xy)z=x(yz)=xyz  }x,y,z.
gcd(gcd(x,y),z)=gcd(x,gcd(y,z))=gcd(x,y,z) lcm(lcm(x,y),z)=lcm(x,lcm(y,z))=lcm(x,y,z)} for all x,y,z.
(AB)C=A(BC)=ABC(AB)C=A(BC)=ABC}for all sets A,B,C.
  • M என்ற கணத்திருந்து M கணத்திற்கு வரையறுக்கப்படும் சார்புகளின் கணம் S எனில், சார்புகளின் தொகுப்பு ஒரு சேர்ப்புச் செயலியாகும்.
(fg)h=f(gh)=fghf,g,hS.

பொதுவாக, M, N, P, Q என்ற நான்கு கணங்களில் f, g, h சார்புகள் பின்வருமாறு அமைந்தால்,

f:MN, g:NP, h:PQ

சார்புகளின் தொகுப்பு ஒரு சேர்ப்புச் செயலியாகும்.

(fg)h=f(gh)=fgh
  • ஒரு கணத்தில் உள்ள உறுப்புகள் A, B, C என்க. அக்கணத்தில் கீழேயுள்ள அட்டவணையில் உள்ளவாறு வரையறுக்கப்படும் செயலியானது சேர்ப்புச்செயலியாகும்.
× A B C
A A A A
B A B C
C A A A

அதாவது (AB)C=A(BC).

சேர்ப்புப் பண்பு இல்லாத செயலிகள்

S கணத்தில் வரையறுக்கப்பட்ட ஈருறுப்புச்செயலி * சேர்ப்புச் செயலி இல்லை எனில், குறியீட்டில்

(x*y)*zx*(y*z)for some x,y,zS. என எழுதலாம்.
(53)25(32)
(4/2)/24/(2/2)
2(12)(21)2
  • எண்களின் முடிவிலா கூடுதல் சேர்ப்புச்செயலி இல்லை.
(11)+(11)+(11)+(11)+(11)+(11)+=0

ஆனால்,

1+(1+1)+(1+1)+(1+1)+(1+1)+(1+1)+(1+=1

சேர்ப்புச் செயலி அல்லாதவற்றின் குறியீடுகள்

பொதுவாக ஒரு கோவையில் சேர்ப்புப் பண்பில்லாத செயலியானது ஒன்றுக்கு மேற்பட்ட முறைகள் வருமானால் மதிப்பிடவேண்டிய வரிசையைக் குறிப்பதற்காக அடைப்புக்குறிகள் இடப்பட வேண்டும். எனினும் கணிதவியலாளர்கள் சேர்ப்புப் பண்பு இல்லாத சில பொதுவான செயலிகளுக்கு குறிப்பிட்ட மதிப்பீட்டு வரிசைமுறைகளை வழக்கமான குறியீடுகளாக ஏற்றுக்கொண்டுள்ளனர்(அடைப்புக்குறிகளைத் தவிர்க்கும் விதமாக.)

  • இடது சேர்ப்புச்செயல் ஒரு சேர்ப்புச்செயலி அல்ல. இச்செயல் இடமிருந்து வலமாக செய்யப்படுகிறது.
x*y*z=(x*y)*zw*x*y*z=((w*x)*y)*zetc.  }for all w,x,y,zS
இடது சேர்ப்புச்செயல்கள்:
  • மெய்யெண்களின் கழித்தலும் வகுத்தலும்
xyz=(xy)zx,y,z;
x/y/z=(x/y)/zx,y,z,y0,z0.
  • சார்புகளின் பயன்பாடு:
(fxy)=((fx)y)
  • வலது சேர்ப்புச்செயல் சேர்ப்புச்செயலி கிடையாது. அவை வலமிருந்து இடமாக செய்யப்படுகின்றன.
x*y*z=x*(y*z)w*x*y*z=w*(x*(y*z))etc.  }for all w,x,y,zS
வலது சேர்ப்புச்செயல்கள்:
  • மெய்யெண்களின் அடுக்கேற்றம்:
xyz=x(yz).
  • சார்புகளின் வரையறை
=()
a×(b×c)(a×b)×cvectors a,b,c3
  • மெய்யெண்களில் சோடிசோடியாகச் சராசரி காணும் செயல்
(x+y)/2+z2x+(y+z)/22x,y,z,xz.
(AB)C, A(BC) இரண்டும் ஒன்றல்ல.
(A\B)\C , A\(B\C) இன் வென்படங்கள்
(A\B)\C , A\(B\C) இன் வென்படங்கள்
வார்ப்புரு:Clear
இங்குள்ள வென் படத்தில் இடதுபுறமுள்ள பச்சை நிறப்பகுதி (AB)C ஐக் குறிக்கிறது. வலதுபுறமுள்ள பச்சை நிறப்பகுதி A(BC) ஐக் குறிக்கிறது. இவை சமமல்ல.

மேற்கோள்கள்

வார்ப்புரு:Reflist

"https://ta.wiki.beta.math.wmflabs.org/w/index.php?title=சேர்ப்புப்_பண்பு&oldid=440" இலிருந்து மீள்விக்கப்பட்டது