கூட்டல் (கணிதம்)

testwiki இலிருந்து
Jump to navigation Jump to search
ஆப்பிள்களைக் கொண்டு 3 + 2 = 5 என்பதன் படவிளக்கம்[1]

கணிதத்தில், கூட்டல் (Addition) என்பது இரண்டு அல்லது அதற்கு மேற்பட்ட எண்களை ஒன்றாக்கி அதாவது ஒன்றுடன் ஒன்று கூட்டி ஒரு தொகையை அல்லது மொத்தத்தைப் பெறுகின்ற ஒரு கணிதச் செயல் ஆகும். இது எண்கணிதத்தின் நான்கு அடிப்படைச் செயல்களில் ஒன்றாக உள்ளது. கழித்தல், பெருக்கல், வகுத்தல் ஆகியவை ஏனைய மூன்று கணித அடிப்படைச் செயல்களாகும்.

இரு இயல் எண்களின் கூடுதல் அவ்விரு எண்களின் மொத்த மதிப்பினைக் குறிக்கும் இயல் எண்ணாகும். 3 மற்றும் 2 ஆப்பிள்கள் சேர்ந்து மொத்தமாக 5 ஆப்பிள்கள் உள்ள தொகுப்பு படத்தில் காட்டப்பட்டுள்ளது. இப்பட விளக்கத்திற்கு இணையான கணிதக்கோவை:

வார்ப்புரு:Nowrap
அதாவது, "3 "கூட்டல்" 2 சமம் 5".

கூட்டல் என்பது, பல தொகுதிப் பொருட்களை இணைத்து ஒரு தொகுதி ஆக்குதல் போன்றவற்றுக்கான ஒரு மாதிரி (model) ஆகவும் அமைகின்றது. ஒன்று என்னும் எண்ணைத் தொடர்ச்சியாகக் கூட்டும் செயற்பாடே மிக அடிப்படையான எண்ணுதல் ஆகும். கூட்டல், எண்கள் சார்ந்த மிகவும் எளிமையான செயற்பாடுகளில் ஒன்றாகும்.

குறியீடு

கூட்டல் குறி எனப்படும் "+" மூலம் கூட்டலானது குறிக்கப்படுகின்றது. இக்குறி, கூட்டப்பட வேண்டிய எண்களுக்கு இடையே எழுதப்படுகின்றது (எகா: 3 + 4). கூட்டலின் மூலம் கிடைக்கும் விளைவு, அதாவது மொத்தம், சமன் குறியுடன் எழுதப்படும். எடுத்துக் காட்டாக:

1+1=2
2+2=4
5+4+2=11
3+3+3+3=12

1+1=2 என்பதை ஒன்றும் ஒன்றும் இரண்டு என்றோ, ஒன்று சக ஒன்று சமன் இரண்டு என்றோ வாசிக்கலாம்.

செயல்முறைக் குறியீடுகள் எதுவும் இல்லாமலேயே கூட்டல் என்பதைப் புரிந்துகொள்ளும் வகையில் எழுதும் வேறு முறைகளும் உள்ளன: எடுத்துக் காட்டாக:

  • எண்களை ஒன்றுக்குக் கீழ் ஒன்றாக எழுதி அடியில் கிடைக் கோடு ஒன்றை இட்டு, அதன் கீழ் கூட்டல் தொகையை, அருகில் காட்டப்பட்டுள்ளது போல எழுதுவதன் மூலம் கிடைக் கோட்டுக்கு மேலுள்ள எண்களின் கூட்டுத்தொகை அக்கோட்டுக்குக் கீழுள்ள எண்ணுக்குச் சமன் என்ற பொருள் புரிந்து கொள்ளப்படுகின்றது.
  • ஒரு முழு எண்ணும் அதனைத் தொடர்ந்து எழுதப்படும் பின்னமும் இணைந்து அவ்விரண்டின் கூடுதலைக் குறிக்கிறது. மேலும் அவ்வடிவலமையும் அக்கூடுதல் "கலப்பு பின்னம்" எனவும் அழைக்கப்படுகிறது.[2]
வார்ப்புரு:Spaces3½ = 3 + ½ = 3.5

பெரும்பாலான கணிதச் சூழல்களில் இரு கணியங்கள் அடுத்தடுத்து எழுதப்படுவது பெருக்கலைக் குறிக்கும் என்பதால் இரண்டிற்கும் வேறுபாடு அறிவதில் குழப்பமும் நேரலாம்[3]

தொடர்புள்ள எண்களாலான ஒரு தொடரின் கூடுதலை கூட்டுகைக் குறியைப் பயன்படுத்தி சுருக்கமாக எழுதலாம்:

k=15k2=12+22+32+42+52=55.

தொடர்பான சொற்கள்

கூட்டப்பட வேண்டிய எண்களானவை, "உறுப்புகள்",[4] கூட்டும் எண்கள் (addend)[5][6][7] அல்லது கூட்டற்பகுதிகள் (summand);[8] என அழைக்கப்படுகின்றன. பல உறுப்புகளைக் கூட்டும்போது இச்சொற்கள் பயன்படுத்தப்படுகின்றன.

இச்சொற்களும் பெருக்கப்படும் எண்களுக்குப் பயன்படுத்தப்படும் காரணிகள் என்ற சொல்லும் வெவ்வேறு பொருள்தருபவை. சில கணிதாசிரியர்கள், கூட்டப்படும் முதல் எண்ணை கூட்டுப்பொருள் (augend) எனவும் அழைத்தனர்.[5][6][7] ஐரோப்பிய மறுமலர்ச்சி காலத்தில் பல ஆசிரியர்கள் கூட்டலில் வரும் முதல் எண்ணை, "கூட்டும் எண்ணாகவேக் (addend)" கருதவில்லை. எனினும் தற்காலத்தில் கூட்டலின் பரிமாற்றுத்தன்மை காரணமாக " கூட்டுப்பொருள் (augend)" என்ற சொல் அரிதாகவே பயன்படுத்தப்படுகிறது; கூட்டும் எண்கள் என்ற சொல்லே பொதுவாகப் பயன்படுத்தப்படுகிறது.[9]

மேற்கூறப்பட்டுள்ள சொற்களுக்கு இணையான ஆங்கிலச் சொற்கள் இலத்தீன் மொழியிலிருந்து பெறப்பட்டவையாகும். "Addition", "add" ஆகிய இரு வார்த்தைகளும் இலத்தீன் வினைச்சொல்லான addere இலிருந்து பெறப்பட்டவை.[9] "add" என்ற வினைச்சொல்லுடன் -nd என்ற விகுதி சேர்த்துப்பெறப்பட்ட பெயர்ச்சொல்லான "addend" என்பது, "கூட்டப்பட வேண்டிய பொருட்கள்" ("thing to be added") என்ற பொருளைத் தருகிறது.[lower-alpha 1] இதேபோல augere ("to increase") என்ற இலத்தீன் வார்த்தையிலிருந்து, "augend" ("thing to be increased") என்ற ஆங்கிலச்சொல் பெறப்பட்டுள்ளது.

"கூடுதல்" அல்லது "கூட்டுத்தொகை" மற்றும் "கூட்டுப்பகுதி" ஆகிய சொற்களுக்கு இணையான "Sum", "summand" என்ற ஆங்கிலச் சொற்கள் இலத்தீன் மொழியின் பெயர்ச்சொல்லான summa ("the highest, the top") மற்றும் வினைச்சொல்லான summare ஆகியவற்றிலிருந்து உருவானவை. இரு நேர்ம எண்களின் கூடுதல் அவ்விரு எண்களின் மதிப்புகளைவிட அதிகமானது என்பதாலும், பண்டைய கிரேக்கர்களும் பண்டைய ரோமானியர்களும் எண்களைக் கூட்டும்பொழுது கீழிருந்து மேலாகச் சென்று விடையை மேற்புறம் தரும் வழக்கம் கொண்டிருந்ததாலும், summa மற்றும் summare இலத்தீன் சொற்களின் பொருள் ("the highest, the top") பொருத்தமானதாக அமைகிறது.[10]

பண்புகள்

பரிமாற்றுப் பண்பு

கட்டங்களைக் கொண்டு 4 + 2 = 2 + 4 எனக் காட்டப்பட்டுள்ளது

கூட்டல் பரிமாற்றுத்தன்மை உடையது: கூட்டும் எண்களின் வரிசையை மாற்றினாலும் கூட்டுத்தொகையில் மாற்றமிருக்காது.

a, b என்பன ஏதானுமிரு எண்கள் எனில்:
a + b = b + a.

கூட்டலின் பரிமாற்றுப்பண்பானது, "கூட்டலின் பரிமாற்று விதி" எனப்படுகிறது. கணித அடிப்படைச் செயல்களில் கூட்டலும் பெருக்கலும் பரிமாற்றுப்பண்புடையன; ஆனால் கழித்தலுக்கும் வகுத்தலுக்கும் இப்பண்பு கிடையாது.

சேர்ப்புப் பண்பு

துண்டாக்கப்பட்ட கோல் மூலம் 2 + (1 + 3) = (2 + 1) + 3 எனக் காட்டல்

கூட்டல் சேர்ப்புத்தன்மை கொண்டது: மூன்று அல்லது மூன்றுக்கு மேற்பட்ட எண்களைக் கூட்டும் போது செயலியை அமல்படுத்தும் வரிசை முறை மாற்றப்பட்டாலும் இறுதி விடையில் மாற்றமிருக்காது.

a, b, c எவையேனும் மூன்று எண்கள் எனில்:

(a + b) + c = a + (b + c)
வார்ப்புரு:Nowrap.

எனினும், பிற கணிதச் செயல்களுடன் கூட்டல் இணையும்போது செயலியை அமல்படுத்தும் வரிசை முறை முக்கியமாகிறது. அடுக்கேற்றம், Nஆம் படி மூலம், பெருக்கல், வகுத்தல் இவற்றுடன் கலந்து கூட்டல் செயலி வரும்போது கூட்டலுக்கு கடைசி நிலையே அளிக்கப்படும். ஆனால் கழித்தலுக்கும் கூட்டலுக்கும் சமநிலை அளிக்கப்படும்.[11]

சமனி உறுப்பு

5 + 0 = 5 -இன் விளக்கப்படம்

சுழியத்தை எந்தவொரு எண்ணுடன் கூட்டினாலும் அந்த எண் மாறாது. சுழியமானது கூட்டலின் முற்றொருமை உறுப்பு அல்லது கூட்டல் முற்றொருமை என அழைக்கப்படுகிறது. :a ஏதாவது ஒரு எண் எனில்:

a + 0 = 0 + a = a.

இந்த கூட்டலின் சமனி பற்றிய குறிப்பு கிபி 628 இல் பிரம்மகுப்தரின் பிரம்மசுபுத்தசித்தாந்தம் (Brahmasphutasiddhanta) என்ற நூலில் காணப்படுகிறது. இவ்விதியை அவர் மூன்றுவகையாக, ஒரு எதிர்ம எண்ணுக்கு, சுழியத்துக்கு, மற்றும் ஒரு நேர்ம எண்ணுக்கு என மூன்று வகையாகக் குறிப்பிட்டுள்ளார். இயற்கணிதக் குறியீடுகளில் அல்லாது வார்த்தைகளால் அவற்றை விளக்கியுள்ளார். பின்னர் வந்த இந்தியக் கணிதவியலாளர்கள் இக்கருத்தினை மேம்படுத்தினர். வார்ப்புரு:Nowrap என்ற கூற்றுக்கு இணையானதாக, கிபி 830 களில் மகாவீரா, "எதனுடன் கூட்டப்படுகிறதோ அதுவாகவே சுழியம் ஆகிறது" எனக் குறிப்பிட்டுள்ளார். 12 ஆம் நூற்றாண்டில் வார்ப்புரு:Nowrap என்ற கூற்றுக்கு இணையானதாக, இரண்டாம் பாஸ்கரர் "எந்தவொரு நேர்ம அல்லது எதிர்ம எண்ணுடனும் சுழியத்தைக் கூட்டும்போது அந்த எண்ணானது மாறாமல் இருக்கும்" எனக் குறிப்பிட்டுள்ளார்.[12]

குறிப்புகள்

வார்ப்புரு:Notelist

மேற்கோள்கள்

வார்ப்புரு:Reflist

இவற்றையும் பார்க்கவும்

  1. From Enderton (p.138): "...select two sets K and L with card K = 2 and card L = 3. Sets of fingers are handy; sets of apples are preferred by textbooks."
  2. Devine et al. p.263
  3. Mazur, Joseph. Enlightening Symbols: A Short History of Mathematical Notation and Its Hidden Powers. Princeton University Press, 2014. p. 161
  4. Department of the Army (1961) Army Technical Manual TM 11-684: Principles and Applications of Mathematics for Communications-Electronics. Section 5.1
  5. 5.0 5.1 வார்ப்புரு:Cite book
  6. 6.0 6.1 வார்ப்புரு:Cite book
  7. 7.0 7.1 வார்ப்புரு:Cite book
  8. Hosch, W. L. (Ed.). (2010). The Britannica Guide to Numbers and Measurement. The Rosen Publishing Group. p.38
  9. 9.0 9.1 Schwartzman p.19
  10. Schwartzman (p.212) attributes adding upwards to the Greeks and Romans, saying it was about as common as adding downwards. On the other hand, Karpinski (p.103) writes that ஃபிபொனாச்சி "introduces the novelty of writing the sum above the addends"; it is unclear whether Karpinski is claiming this as an original invention or simply the introduction of the practice to Europe.
  11. வார்ப்புரு:Cite web
  12. Kaplan pp.69–71


பிழை காட்டு: <ref> tags exist for a group named "lower-alpha", but no corresponding <references group="lower-alpha"/> tag was found

"https://ta.wiki.beta.math.wmflabs.org/w/index.php?title=கூட்டல்_(கணிதம்)&oldid=125" இலிருந்து மீள்விக்கப்பட்டது