ஒன்பது-புள்ளி வட்டமையம்

testwiki இலிருந்து
Jump to navigation Jump to search
ஒரு முக்கோணத்தின் சுற்றுவட்டமும் சுற்றுவட்டமையமும் (கருப்பு); குத்துக்கோடுகளும் குத்துச்சந்தியும் (சிவப்பு); ஒன்பது-புள்ளி வட்டமும் ஒன்பது-புள்ளி வட்டமையமும் (நீலம்).

ஒரு முக்கோணத்தின் ஒன்பது-புள்ளி வட்டமையம் (nine-point center) அம்முக்கோணத்தின் முக்கோண மையங்களுள் ஒன்று (முக்கோண மையங்கள் என்பவை ஒரு முக்கோணத்தின் அளவு மற்றும் அமைநிலையைப் பொறுத்து மாறாத்தன்மை கொண்ட புள்ளிகள் ஆகும்). முக்கோணத்தின் பக்கங்களின் மூன்று நடுப்புள்ளிகள்; பக்கங்களின் குத்துக்கோடுகளின் மூன்று அடிப்புள்ளிகள்; செங்குத்துச்சந்தியை முக்கோணத்தின் உச்சிகளுடன் இணைக்கும் கோட்டுத்துண்டுகளின் மூன்று நடுப்புள்ளிகள் ஆகிய குறிப்பிட்ட ஒன்பது புள்ளிகளின் வழியே செல்லும் ஒன்பது-புள்ளி வட்டத்தின் மையப்புள்ளியாக இருப்பதால் இப்பெயர் பெற்றது. கிளார்க் கிம்பர்லிங்கின் முக்கோண மையங்களின் கலைக்களஞ்சியத்தில் ஒன்பது-புள்ளி வட்டமையம் X(5) எனப் பட்டியலிடப்பட்டுள்ளது.[1][2]

பண்புகள்

  • முக்கோணத்தின் ஆய்லர் கோட்டின் மீது, செங்குத்துச்சந்தி H க்கும் சுற்றுவட்டமையம் O க்கும் நடுப்புள்ளியாக ஒன்பது-புள்ளி வட்டமையம் ( N) அமைகிறது. மேலும் ஆய்லர் கோட்டின் மீது செங்குத்துச்சந்திக்கும் சுற்றுவட்டமையத்திற்கும் இடையே செங்குத்துச்சந்தியிலிருந்து 2/3 பங்கு தொலைவில் நடுக்கோட்டுச்சந்தி G, அமைவதால் கீழ்க்காணும் தொடர்பு கிடைக்கிறது[2][3]:
NO=NH=3NG.

எனவே ஒன்பது-புள்ளி வட்டமையம், செங்குத்துச்சந்தி, சுற்றுவட்டமையம், நடுக்கோட்டுச்சந்தி ஆகிய நான்கு முக்கோண மையங்களில் எவையேனும் இரண்டு தெரிந்தால் மற்ற இரண்டினையும் காணமுடியும்.

ஒரு முக்கோணத்தின் இந்நான்கு புள்ளிகளின் நிலைகள் காணப்பட்டிருந்தால், அம்முக்கோணத்தின் செங்குத்துச்சந்தியையும் நடுக்கோட்டுச்சந்தியையும் இணைக்கும் கோட்டுத்துண்டை விட்டமாகக் கொண்ட வட்டத்தினுள் (orthocentroidal circle) அம்முக்கோணத்தின் உள்வட்டமையமானது அமையும். இவ்வட்டத்துக்குள் அமையும் புள்ளிகளில், ஒன்பது-புள்ளி வட்டமையம் மட்டுமே ஒரு முக்கோணத்தின் உள்வட்டமையமாக இல்லாத ஒரேயொரு புள்ளியாக இருக்கும்; ஏனைய புள்ளிகள் ஒவ்வொன்றும் ஒரு தனித்த முக்கோணத்தின் உள்வட்டமையமாக அமையும்.[4][5][6][7]

  • ஒன்பது-புள்ளி வட்டமையம் N , உள்வட்டமையம் I இரண்டுக்கும் இடைப்பட்ட தொலைவு:
IN<12IO,
IN=12(R2r)<R2,
2RIN=OI2,
R -சுற்றுவட்ட ஆரம்; r -உள்வட்ட ஆரம்
  • மூல முக்கோணத்தின் நடுப்புள்ளி முக்கோணம், ஆர்த்திக் முக்கோணம், ஆய்லர் முக்கோணம் ஆகியவற்றின் சுற்றுவட்ட மையங்களாக ஒன்பது-புள்ளி வட்டமையம் அமையும்.[3] பொதுவாக ஒன்பது-புள்ளி வட்டத்தை வரையறுக்கும் ஒன்பது புல்ளிகளிலிருந்து எவையேனும் மூன்று புள்ளிகளைக் கொண்டு உருவாக்கப்படும் முக்கோணங்கள் எல்லாவற்றுக்கும் ஒன்பது-புள்ளி வட்டமையமானது சுற்றுவட்டமையமாக இருக்கும்.
  • முக்கோணத்தின் மூன்று உச்சிகளும் செங்குத்துச்சந்தியுமாகிய நான்கு புள்ளிகளின் திணிவு மையத்தில் ஒன்பது-புள்ளி வட்டமையம் அமையும்[8]
  • ஒன்பது-புள்ளி வட்டத்தை வரையறுக்கும் ஒன்பது புள்ளிகளில், முக்கோணத்தின் உச்சிகளையும் செங்குத்துச்சந்தியையும் இணைக்கும் கோட்டுத்துண்டுகளின் நடுப்புள்ளிகளாக அமையும் மூன்று புள்ளிகளும், ஒன்பது-புள்ளி வட்டமையத்தைப் பொறுத்து எதிரொளிக்கப்பட்ட முக்கோணத்தின் பக்க நடுப்புள்ளிகளின் எதிருருக்களாகும். எனவே ஒன்பது-புள்ளி வட்டமையம் ஒரு புள்ளி எதிரொளிப்பின் மையமாகும். இந்தப் புள்ளி எதிரொளிப்பில், நடுப்புள்ளி முக்கோணம் ஆய்லர் முக்கோணமாகவும், (ஆய்லர் முக்கோணம் நடுப்புள்ளி முக்கோணமாகவும்) எதிரொளிக்கப்படுகிறது[3]

ஆட்கூறுகள்

ஒன்பது-புள்ளி வட்டமையத்தின் முந்நேரியல் ஆட்கூறுகள்[1][2]:

cos(BC):cos(CA):cos(AB)
=cosA+2cosBcosC:cosB+2cosCcosA:cosC+2cosAcosB
=cosA2sinBsinC:cosB2sinCsinA:cosC2sinAsinB
=bc[a2(b2+c2)(b2c2)2]:ca[b2(c2+a2)(c2a2)2]:ab[c2(a2+b2)(a2b2)2].

ஒன்பது-புள்ளி வட்டமையத்தின் பொருள்மைய (Barycentric) ஆட்கூறுகள்:[2]

acos(BC):bcos(CA):ccos(AB)
=a2(b2+c2)(b2c2)2:b2(c2+a2)(c2a2)2:c2(a2+b2)(a2b2)2.

மேற்கோள்கள்

வார்ப்புரு:Reflist

வெளியிணைப்புகள்

  1. 1.0 1.1 வார்ப்புரு:Citation.
  2. 2.0 2.1 2.2 2.3 Encyclopedia of Triangle Centers, accessed 2014-10-23.
  3. 3.0 3.1 3.2 வார்ப்புரு:Citationவார்ப்புரு:Dead link.
  4. வார்ப்புரு:Citation.
  5. வார்ப்புரு:Citation.
  6. வார்ப்புரு:Citation.
  7. Franzsen, William N. "The distance from the incenter to the Euler line", Forum Geometricorum 11, 2011, 231-236. http://forumgeom.fau.edu/FG2011volume11/FG201126index.html
  8. The Encyclopedia of Triangle Centers credits this observation to Randy Hutson, 2011.