தொடர் பெருக்கம்

testwiki இலிருந்து
Jump to navigation Jump to search

ஒரு நேர்ம முழு எண்ணின் தொடர் பெருக்கம் அல்லது காரணியம் அல்லது காரணீயம் (factorial) என்பது அதற்கு சமமாகவும் குறைவாகவும் உள்ள எல்லா நேர்ம முழு எண்களின் பெருக்கல் ஆகும். இது n! எனக் குறிக்கப்படும்.

எ.கா:

5!=5×4×3×2×1=120 
4!=4×3×2×1=24 
3!=3×2×1=6 
2!=2×1=2 
1!=1 
0!=1  (வெற்றுப் பெருக்கத்தின் வழமைப்படி[1]).

தொடர் பெருக்கச் செய்கையைக் கணிதத்தில் பல பகுதிகளில் காணமுடியும். குறிப்பாக சேர்மானவியல், இயற்கணிதம், கணிதப் பகுப்பாய்வு என்பவற்றைக் குறிப்பிடலாம். இதன் மிக அடிப்படையாக பயன்பாட்டை, வரிசை மாற்றத்தில், வெவ்வேறான n பொருட்களை n! வழிகளில் தொடராக ஒழுங்குபடுத்தலாம்" என்பதில் காணமுடிகிறது. இந்த உண்மை ஆகப் பிந்தியது 12ம் நூற்றாண்டிலேயே இந்திய அறிஞர்களுக்குத் தெரிந்திருக்கிறது.[2] பிரான்சு நாட்டைச் சேர்ந்த கணிதவியலாளர் கிறித்தியன் கிறாம்ப் என்பவர் n! குறியீட்டை 1808 ஆம் ஆண்டில் முதன் முதலில் அறிமுகப்படுத்தினார்.

வரைவிலக்கணம்

தொடர் பெருக்கச் சார்பு பின்வருமா று வரையறுக்கப்படுகிறது:

n!=k=1nk

அல்லது பின்வரும் தொடர்பின் மூலமும் இது தரப்படலாம்:

n!={1if n=0,(n1)!×nif n>0

அடுக்கு விதியைப் பயன்படுத்தியும் பின்வருமாறு இதை வரையறுக்க முடியும்:

n!=Dnxn[3]

மேற்காட்டிய எல்லா வரைவிலக்கணங்களும் :0!=1,  என்பதை உட்படுத்துகின்றன.

பயன்பாடுகள்

பெரும்பாலும் சேர்மானவியலைச் சேர்ந்தது என்றாலும் கணிதத்தின் பல பிரிவுகளிலுள்ள வாய்ப்பாடுகளில் தொடர் பெருக்கம் காணப்படுகிறது.

  • வெவ்வேறான n பொருட்களை வெவ்வேறான n! வழிகளில் வரிசைப்படுத்தலாம். அதாவது வெவ்வேறான n பொருட்களின் வரிசைமாற்றங்களின் எண்ணிக்கை n! ஆகும்.
  • வரிசைப்படுத்தல் தவிர்க்கப்பட வேண்டுமென்பதற்காகப் பெரும்பாலும் தொடர் பெருக்கமானது வாய்ப்பாடுகளில் பகுதியில் காணப்படும்.

எடுத்துக்காட்டு: n பொருட்கள் கொண்ட கணத்திலிருந்து k பொருட்களைத் தேர்வுசெய்து அவற்றை வரிசைப்படுத்தும் வழிகளின் எண்ணிக்கை:

nk_=n(n1)(n2)(nk+1)

இந்த வழிகளில் தேர்வுகள் ஒவ்வொன்றிலும் தேர்ந்தெடுக்கப்பட்ட k பொருட்களை வரிசைப்படுத்தக்கூடிய k! வெவ்வேறான வழிகளும் அடங்கும் எனபதால் வரிசைப்படுத்தலைத் தவிர்த்து, n பொருட்கள் கொண்ட கணத்திலிருந்து k பொருட்களின் சேர்வுகளின் எண்ணிக்கைக்கான வாய்ப்பாடு:

nk_k!=n(n1)(n2)(nk+1)k(k1)(k2)1=n!(nk)!

இந்த வாய்ப்பாடு வார்ப்புரு:Nowrap விரிவில் Xk இன் கெழுவாகவும் அமைவதால் ஈருறுப்புக் கெழு ((nk)) எனவும் அழைக்கப்படுகிறது.

டெயிலரின் தேற்றம்:[4][5][6]

k ≥ 1 ஒரு முழு எண்; வார்ப்புரு:Nowrap புள்ளியில், சார்பு வார்ப்புரு:Nowrap k தடவைகள் வகையிடத்தக்கது எனில், வார்ப்புரு:Nowrap என்ற ஒரு சார்பு பின்வருமாறு இருக்கும்:

f(x)=f(a)+f(a)(xa)+f(a)2!(xa)2++f(k)(a)k!(xa)k+hk(x)(xa)k,

andlimxahk(x)=0

  • நிகழ்தகவின் பல வாய்ப்பாடுகளில் தொடர்பெருக்கம் பயன்படுத்தப்பட்டுள்ளது.

எடுத்துக்காட்டு:

f(k;λ)=Pr(X=k)=λkeλk!

இவ்வாய்ப்பாட்டில்,

தனித்த சமவாய்ப்பு மாறி Xவார்ப்புரு:Space; λ > 0; k =0,1,2,…, e = 2.71828....

எண் கோட்பாடு

  •  n மற்றும் அதைவிடச் சிறியதான அனைத்து பகா எண்களாலும் n! வகுபடும். இதன் விளைவாகக் கிடைக்கும் முடிவுகள்:
    • n > 5 ஒரு பகு எண்ணாக இருந்தால், இருந்தால் மட்டுமே
(n1)!  0(modn).
    • p ஒரு பகா எண்ணாக இருந்தால், இருந்தால் மட்டுமே
(p1)!  1(modp) (வில்சனின் தேற்றம்)
  • பகா எண்ணாகவும் தொடர் பெருக்கமாகவும் அமையும் ஒரே எண் 2.  n! ± 1, என்ற வடிவிலமையும் எண்கள் காரணீயப் பகாஎண்களென அழைக்கப்படுகின்றன.
  • 1! ஐ விடப் பெரிய தொடர் பெருக்கங்கள் அனைத்தும் இரண்டின் மடங்குகளாக இருப்பதால் அவை இரட்டை எண்களாகும். 5! ஐ விடப் பெரிய தொடர் பெருக்கங்கள் அனைத்தும் இரண்டு மற்றும் மடங்குகளாக இருப்பதால் அவை பத்தின் மடங்குகளாக இருக்கும்.

தலைகீழிகளின் தொடர்

தொடர் பெருக்கங்களின் பெருக்கல் தலைகீழிகளாலான தொடர், ஒருங்கும் தொடராக இருக்கும்:

n=01n!=11+11+12+16+124+1120+=e.

இத் தொடரின் கூடுதல் ஒரு விகிதமுறா எண் என்றாலும், தொடரின் உறுப்பிலுள்ள தொடர் பெருக்கங்களை நேர் முழு எண்களைக் கொண்டு பெருக்கி, தொடரை விகிதமுறு எண்ணைக் கூடுதலாகக் கொண்ட ஒருங்கு தொடராக மாற்றலாம்:

n=01(n+2)n!=12+13+18+130+1144=1.

இதனால் தொடர் பெருக்கங்கள் விகிதமுறாத் தொடர்முறைகளை அமைக்காது.[8]

ஒத்த பிற பெருக்கங்களும் சார்புகளும்

கணிதத்தில் தொடர் பெருக்கம் போன்ற பிற பெருக்கங்களும் வரையறுக்கப்பட்டுள்ளன. அவை:

பகாத்தனி தொடர்பெருக்கம்

பகாத்தனி தொடர்பெருக்கம் (primorial) என்பது, பகாஎண்களின் தொடர்பெருக்கச் சார்பாக அமையும். வார்ப்புரு:OEIS

n வது பகா எண் pn இன் பகாஎண் தொடர்பெருக்கம் pn# என்பது முதல் n பகா எண்களின் பெருக்கமாக வரையறுக்கப்படுகிறது:[9][10]

pn#=k=1npk

pk என்பது k -வது பகா எண்.

எடுத்துக்காட்டாக:

p5#=2×3×5×7×11=2310.

முதல் ஆறு பகாஎண் தொடர்பெருக்கங்கள்:

1, 2, 6, 30, 210, 2310.

(இதில் p0# = 1 என வெற்றுப் பெருக்கமாகக் கொள்ளப்படுகிறது.))

பொதுவாக ஏதேனுமொரு இயல் எண்ணிற்கு கீழ்க்காண்டவாறு வரையறுக்கப்படுகிறது:

ஒரு நேர் முழு எண் n இன் பகாஎண் தொடர்பெருக்கம் n# என்பது n -ஐ விடச்சிறிய பகாஎண்களின் பெருக்கமாக வரையறுக்கப்படுகிறது:[9][11]

n#=i=1π(n)pi=pπ(n)#

இங்கு, π(n) பகாஎண்-எண்ணும் சார்பு வார்ப்புரு:OEIS, n -ஐ விடச்சிறிய பகாஎண்களைத் தருகிறது.

இவ்வரையறை கீழுள்ள வரையறைக்கு ஈடானதாகும்:

n#={1if n=1n×((n1)#)if n>1 & n is prime(n1)#if n>1 & n is composite.

எடுத்துக்காட்டாக, 12# என்பது 12க்கும் குறைந்த பகாஎண்களின் தொடர்பெருக்கம்:

12#=2×3×5×7×11=2310.

இரட்டைத் தொடர்பெருக்கம்

ஒற்றை நேர் எண் n வரையிலான ஒற்றை எண்களின் பெருக்கம் ’இரட்டைத் தொடர்பெருக்கம்’ (double factorial) எனப்படும். இதன் குறியீடு n!!.[12]

(2k1)!!=i=1k(2i1)=(2k)!2kk!=2kPk2k=(2k)k_2k.

எடுத்துக்காட்டு:

9!! = 1 × 3 × 5 × 7 × 9 = 945.

n = 1, 3, 5, 7, ... எனில் இரட்டைத் தொடர்பெருக்கங்களின் தொடர்முறை:

1, 3, 15, 105, 945, 10395, 135135, .... வார்ப்புரு:OEIS

முக்கோணவியல் தொகையீட்டில் இரட்டைத் தொடர்பெருக்கம் பயன்படுத்தப்படுகிறது.[13]

பல்தொடர்பெருக்கம்

எதிரிலா முழு எண்களின் k-வது தொடர்பெருக்கம் n!(k):

n!(k)={1, if 0n<k,n((nk)!(k)),if nk,  

தொடர்பெருக்கம் n! எதிர் எண்களுக்கு வரையறுக்கப்படாதது போல, இரட்டைத் தொடர்பெருக்கம் n!! எதிர் இரட்டை எண்களுக்கு வரையறுக்கப்படவில்லை; பல்தொடர்பெருக்கம் n!(k) k ஆல் வகுபடும் எதிர் முழுஎண்களுக்கு வரையறுக்கப்படவில்லை.

மேற்கோள்கள்

வார்ப்புரு:Reflist

"https://ta.wiki.beta.math.wmflabs.org/w/index.php?title=தொடர்_பெருக்கம்&oldid=482" இலிருந்து மீள்விக்கப்பட்டது