விவியானியின் தேற்றம்

testwiki இலிருந்து
Jump to navigation Jump to search
சமபக்க முக்கோணத்தின் உட்புறப் புள்ளி P இலிருந்து பக்கங்களுக்குள்ள தூரங்களின் கூடுதல் வார்ப்புரு:Nowrap, முக்கோணத்தின் குத்துயரத்திற்குச் சமம்.

விவியானியின் தேற்றம் (Viviani's theorem) சமபக்க முக்கோணத்தின் முக்கியப் பண்பினைத் தருகிறது. இத்தேற்றத்தின்படி, ஒரு சமபக்க முக்கோணத்தின் உட்புறமுள்ள ஏதாவது ஒரு புள்ளியிலிருந்து அதன் மூன்று பக்கங்களுக்குள்ள தூரங்களின் (மிகச்சிறிய தூரம்) கூட்டுத்தொகையானது அந்த சமபக்கமுக்கோணத்தின் குத்துயரத்திற்குச் சமமாகும்.[1] இத்தேற்றம், இத்தாலியக் கணிதவியலாளரும் அறிவியலாளருமான வின்சென்சோ விவியானியின் பெயரால் அழைக்கப்படுகிறது. அன்றாட வாழ்வியலில் இத்தேற்றம் பரவலான பயன்பாடுடையது.

நிறுவல்

விவியானியின் தேற்றத்தின் படநிறுவல்
1. உட்புள்ளி P இலிருந்து முக்கோணம் ABC இன் பக்கங்களுக்குள்ள மிகச்சிறிய தூரங்கள்.
2. DE, FG, HI மூன்றும் முறையே AB, BC, CA க்களுக்கு இணையாகப் புள்ளி P வழிச் செல்லும் கோடுகள். PHE, PFI, PDG மூன்றும் வடிவொத்த முக்கோணங்கள்.
3. இந்த மூன்றும் சமபக்க முக்கோணங்கள் என்பதால் அவற்றின் குத்துக்கோடுகளை குத்துவாக்காக இருக்குமாறுச் சுழற்றிக் கொள்ளலாம்.
4. PGCH இணைகரம் என்பதால் PHE மேற்புறத்திற்கு நகர்த்திக்கொள்ள, அவற்றின் குத்துயரங்களின் கூடுதல் ABC முக்கோணத்தின் குத்துயரத்திற்குச் சமமாக உள்ளதைக் காணலம்.

ஒரு முக்கோணத்தின் பரப்பு அதன் அடிப்பக்கம், குத்துயரம் இரண்டின் பெருக்குத்தொகையில் பாதி என்ற நிறுவப்பட்ட கூற்றை அடிப்படையாகக் கொண்டு இத்தேற்றம் நிறுவப்படுகிறது.[2]

சமபக்க முக்கோணம் ABC இன் குத்துயரம் h; பக்க நீளம் a.

முக்கோணத்தின் உட்புறமுள்ள ஏதாவது ஒரு புள்ளி; அப்புள்ளியிலிருந்து முக்கோணத்தின் பக்கங்களுக்குள்ள தூரங்கள்: u, s, t. P உடன் A, B, C ஆகிய மூன்று முக்கோணத்தின் உச்சிகளையும் இணைத்து வரையப்படும் கோடுகளால் PAB, PBC, PCA என்ற மூன்று முக்கோணங்கள் கிடைக்கின்றன.

இம்மூன்று முக்கோணங்களின் பரப்பளவுகள்:

PAB முக்கோணத்தின் பரப்பளவு: ua2
PBC முக்கோணத்தின் பரப்பளவு: sa2
PCA முக்கோணத்தின் பரப்பளவு: ta2.

இம்மூன்று முக்கோணங்களும் சேர்ந்து ABC முக்கோணத்தை நிரப்புவதால் இவற்றின் பரப்பளவுகள் கூட்டுத்தொகை ABC முக்கோணத்தின் பரப்பளவுக்குச் சமமாக இருக்கும். எனவே,

ua2+sa2+ta2=ha2

மேலுள்ள கூற்றைச் சுருக்கக் கிடைப்பது:

u+s+t=h

தேற்றம் நிறுவப்பட்டது.

தேற்றத்தின் மறுதலை

தேற்றத்தின் மறுதலையும் உண்மையாகும்.

மறுதலைக் கூற்று: ஒரு முக்கோணத்தின் உட்பக்கப் புள்ளி ஒன்றிலிருந்து அம் முக்கோணத்தின் பக்கங்களுக்கு வரையப்படும் தூரங்களின் கூட்டுத்தொகையானது, அப்புள்ளியின் அமைவிடத்தைச் சாராததாக இருந்தால் அம்முக்கோணம் ஒரு சமபக்க முக்கோணமாகும்.[3]

நீட்டிப்புகள்

இணைகரம்

இத்தேற்றத்தின் கூற்றை ஒரு இணைகரத்திற்குப் பின்வருமாறு நீட்டிக்கலாம்.

ஒரு இணைகரத்தின் உட்புறப் புள்ளி ஒன்றிலிருந்து அதன் நான்கு பக்கங்களுக்குள்ள தூரங்களின் கூடுதலானது அப்புள்ளியின் அமைவிடத்தைச் சார்ந்திருக்காது.

மறுதலையாக,

ஒரு நாற்கரத்தின் உட்புறப் புள்ளி ஒன்றிலிருந்து அதன் நான்கு பக்கங்களுள்ள தூரங்களின் கூடுதலானது அப்புள்ளியின் அமைவிடத்தைச் சார்ந்திருக்கவில்லை என்றால் அந்த நாற்கரம் ஒரு இணைகரமாக இருக்கும்.[3]

ஒழுங்கு பல்கோணம்

ஒரு ஒழுங்கு பல்கோணத்தின் உட்புறப் புள்ளி ஒன்றிலிருந்து அதன் பக்கங்களுக்குள்ள தூரங்களின் கூட்டுத்தொகையானது, அப்புள்ளியின் அமைவிடத்தைச் சார்ந்திருக்காது. மேலும் அக்கூட்டுத்தொகையானது பல்கோணப் பக்கநடுக்கோட்டின் நீளத்தின் n மடங்காக இருக்கும் (n - பல்கோணத்தின் பக்கங்களின் எண்ணிக்கை).[3][4] ஆனால் இக்கூற்றின் மறுதலை உண்மையாகாது.[3]

சமகோணப் பல்கோணம்

ஒரு சமகோணப் பல்கோணத்தின் உட்புறப் புள்ளி ஒன்றிலிருந்து அதன் பக்கங்களுக்குள்ள தூரங்களின் கூடுதல் அப்புள்ளியின் அமைவிடத்தைச் சார்ந்திருக்காது.[1]

ஒழுங்கு பன்முகத்திண்மம்

ஒழுங்கு பன்முகத்திண்மத்தின் உட்புறப் புள்ளி ஒன்றிலிருந்து அதன் பக்கங்களுக்குள்ள தூரங்களின் கூடுதலானது அப்புள்ளியின் அமைவிடத்தைச் சார்ந்திருக்காது. ஆனால் இக்கூற்றின் மறுதலை உண்மையில்லை (நான்முகிக்கும் கூட).[3]

மேற்கோள்கள்

வார்ப்புரு:Reflist

மேலும் வாசிக்க

வெளியிணைப்புகள்