கூம்பு: திருத்தங்களுக்கு இடையிலான வேறுபாடு

testwiki இலிருந்து
Jump to navigation Jump to search
imported>BalajijagadeshBot
சி பராமரிப்பு using AWB
 
(வேறுபாடு ஏதுமில்லை)

07:48, 30 மே 2019 இல் கடைசித் திருத்தம்

நேர்வட்டக் கூம்பும் சாய்வட்டக் கூம்பும்

கூம்பு (cone) என்பது ஒரு வடிவவியல் (இலங்கை வழக்கு: கேத்திர கணிதம்) வடிவம் ஆகும் ஆகும். இது ஒரு தட்டையான அடிப்பக்கத்திலிருந்து உச்சி எனப்படும் புள்ளியை நோக்கி சீராக சாய்வாக அமைந்த ஒரு முப்பரிமாண வடிவமாகும்.

கூம்பானது, உச்சி எனப்படும் ஒரு பொதுப்புள்ளியை, ஒரு தளத்திலமைந்த அடிப்பக்கத்தின் அனைத்துப்புள்ளிகளையும் (உச்சிப் புள்ளி அந்த அடிப்பக்கத்தில் இருக்கக் கூடாது) இணைக்கும் கோட்டுத்துண்டுகள், அரைக்கோடுகள் மற்றும் கோடுகளால் உருவானதாகும். வட்டமாகவோ, ஒருபரிமாண இருபடிவடிவமாகவோ அல்லது ஒருபரிமாண மூடிய வடிவமாகவோ அல்லது மேற்கூறிய ஏதேனுமொன்றுடன் சுற்றுப்புள்ளிகளும் சேர்ந்ததாக அந்த அடிப்பக்கம் அமைந்திருக்கலாம்.

அடிப்பக்கத்தின் சுற்றுப்புள்ளிகளையும் சேர்த்துக் கொள்ளும்போது உருவாகும் கூம்பு ஒரு திண்மமாகவும், சுற்றுப்புள்ளிகள் விடுபடும்போது உருவாகும் கூம்பு முப்பரிமாண வெளியிலமைந்த ஒரு இருபரிமாணப் பொருளாகவும் இருக்கும். கூம்பு திண்மமாக இருக்கும்பொழுது அதனை உருவாக்கும் கோடுகள், கோட்டுத்துண்டுகள், அரைக்கோடுகள் ஆகியவற்றை எல்லைகளாகக் கொண்ட பரப்பு, 'பக்கப் பரப்பு' எனப்படும். பக்கப் பரப்பு எல்லையற்றதாக அமையும்பட்சத்தில் அது ஒரு கூம்புப் பரப்பாக அமையும்.

இரட்டைக் கூம்பு (முடிவிலி நீட்சியாகக் காட்சிப்படுத்தப்படவில்லை)

கூம்பானது கோட்டுத்துண்டுகளால் உருவானால், அது அடிப்பக்கத்தைத் தாண்டி அமையாது; அரைக்கோடுகளால் உருவானால் முடிவிலி தூரத்திற்கு நீட்சியடையும்; கோடுகளால் உருவானால் உச்சியின் இருபுறமும் முடிவிலி தொலைவிற்கு நீட்சி அமைந்து 'இரட்டைக் கூம்பு' எனவும் அழைக்கப்படும்.

அடிப்படை வடிவவியலில் கூம்புகள் நேர்வட்டக் கூம்புகளாக எடுத்துக்கொள்ளப்படுகின்றன. நேர்வட்டக்கூம்பு என்பது அடிப்பக்கம் வட்டமாகவும் கூம்பின் உச்சியையும் அடிவட்டமையத்தையும் இணைக்கும் கோடு (கூம்பின் அச்சு) அடித்தளத்திற்கு செங்குத்தாகவும் கொண்ட கூம்பாகும்.[1] ஒரு நேர்வட்டக்கூம்பின் பக்கப்பரப்பும் மற்றுமொரு தளமும் வெட்டிக்கொள்ளும் போது கிடைக்கும் வெட்டுமுகம் கூம்பு வெட்டு ஆகும். எனினும் பொதுவாக ஒரு கூம்பின் அடிப்பாகம் வட்டமாக மட்டுமே இருக்க வேண்டுமென்பதில்லை;[2] மேலும் உச்சிப் புள்ளி எங்கு வேண்டுமானாலும் இருக்கலாம் (எனினும் பெரும்பாலும் கூம்பின் அடிப்பக்கம் வரம்புடையதாகவும் அதனால் முடிவுற்ற பரப்பளவுடையதாகவும், உச்சியானது அடிப்பக்கத் தளத்திற்கு வெளியேயுள்ள புள்ளியாகவும் கருதப்படுகிறது).

நேர்வட்டக்கூம்பிற்கு மாறாக, சாய்கூம்புகளில் உச்சியையும் அடிப்பக்க மையத்தையும் இணைக்கும் கோடு அடிப்பக்கத்திற்கு செங்குத்தற்றதாக இருக்கும்.[3]

மேலதிகச் சொற்கள்

கூம்பின் அடிப்பக்கத்தின் சுற்றளவு "இயக்குவரை" எனப்படும். இயக்குவரைக்கும் உச்சிக்கும் இடைப்பட்ட ஒன்னவ்வொரு கோட்டுத்துண்டும் கூம்பின் பக்கப்பரப்பின் "பிறப்பிக்கும் கோடு" என்றழைக்கப்படும்.

கூம்பின் ஆரம் என்பது அதன் அடிப்பக்கத்தின் ஆரத்தைக் குறிக்கும். கூம்பின் உச்சிக்கோணம் என்பது அதன் இரு பிறப்பிக்கும் கோடுகளுக்கு இடைப்பட்ட உச்சபட்சக் கோணத்தின் அளவாகும். கூம்பின் அச்சுக்கும் அதன் ஒரு பிறப்பிக்கும் கோட்டிற்கும் இடைப்பட்ட கோணம் θ எனில் அதன் உச்சிக்கோணம் 2θ.

ஒரு தளத்தைக் கொண்டு கூம்பினை அதன் உச்சியுடன் வெட்டக் கிடைக்கும் பகுதி "துண்டிப்புக் கூம்பு" (truncated cone) என்றும், வெட்டும் தளம் கூம்பின் அடிப்பக்கத்திற்கு இணையாக இருக்கும்போது அந்த துண்டிப்புக் கூம்பானது "அடிக்கண்டம்" (frustum) என்றும் அழைக்கப்படும்.[1] அடிப்பக்கத்தை நீள்வட்டமாகக் கொண்ட கூம்பு, நீள்வட்டக் கூம்பு எனப்படும்.[1]

அளவுகளும் சமன்படுகளும்

கனவளவு

ஒரு கூம்பின் கன அளவு V ஆனது அக்கூம்பின் அடிப்பக்கப் பரப்பளவு (AB) மற்றும் கூம்பின் உயரத்தின் (h) பெருக்கற்பலனில் மூன்றில் ஒரு பங்காக இருக்கும்.[4]

V=13ABh.

நுண்கணித முறைப்படி கூம்பின் கன அளவை தொகையீடு x2dx=13x3. ஆகக் கணிக்கலாம்.

நிறை மையம்

சீரான அடர்த்தியுடைய ஒரு திண்மக் கூம்பின் நிறை மையம், அக்கூம்பின் அடிப்பக்க மையத்தையும் உச்சியையும் இணைக்கும் கோட்டில் அடிப்பக்க மையத்திலிருந்து கால்வழி தூரத்தில் அமைந்திருக்கும்.

நேர்வட்டக் கூம்பு

நேர்வட்டக் கூம்பு

செங்கோண முக்கோணம் ஒன்றை அதன் சிறிய பக்கங்களுள் ஒன்றை அச்சாகக் கொண்டு சுழற்றும் போது இது உருவாகின்றது. மற்றச் சிறிய பக்கத்தின் சுழற்சியினால் உருவாகும் தட்டு அக்கூம்பின் அடி எனப்படும். இந்த அடியில் அமையாத, அச்சின் மறுமுனை கூம்பின் உச்சி என அழைக்கப்படுகின்றது.

கன அளவு

r என்னும் அடித்தட்டு ஆரையையும், h உயரத்தையும் கொண்ட ஒரு நேர்வட்டக் கூம்பின் கனவளவு V[5]:

V=πr2h/3 என்னும் சூத்திரத்தால் கொடுக்கப்படுகின்றது.

இது அதே அளவிகளைக் கொண்ட உருளை ஒன்றின் கனவளவின் மூன்றில் ஒரு பங்கு ஆகும்.

சாய்வு உயரம்

கூம்பின் சாய்வு உயரம் (l)என்பது, அதன் உச்சிக்கும் அடிப்பக்க வட்டத்தின் மீதுள்ள ஏதேனும் ஒரு புள்ளிக்கும் இடைப்பட்டதாக, கூம்பின் மேற்பரப்பின் அமைந்த கோட்டுத்துண்டின் நீளமாகும்.

l=r2+h2 கூம்பின் சாய்வு உயரமாகும்.

இது பிதாகரஸ் கோட்பாட்டின்படி விளைந்தது.

வளைபரப்பளவு

நேர்வட்டக்கூம்பின் பக்க மேற்பரப்பளவு அல்லது வளைபரப்பளவு என்பது அதன் அடிப்பக்கம் நீங்கலான பகுதியின் பரப்பளவினைக் குறிக்கும்:

LSA=πrl

இதில் r என்பது நேர்வட்டக்கூம்பின் அடிவட்ட ஆரம்; l என்பது சாய்வு உயரம்.[4]

மொத்த மேற்பரப்பளவு

நேர்வட்டக் கூம்பொன்றின் மொத்தப் பரப்பளவு A:

மொத்த மேற்பரப்பு A = அடிப்பரப்பு + வளைபரப்பு
  • ஆரம், உயரம்
A=πr2+πrr2+h2
(l=r2+h2 - சாய்வு உயரம்)
A=πr(r+r2+h2)
r கூம்பின் ஆரம்; h கூம்பின் உயரம்.
  • ஆரம், சாய்வு உயரம்
A=πr2+πrl
A=πr(r+l)
r கூம்பின் ஆரம்; l சாய்வு உயரம்.
  • சுற்றளவு, சாய்வு உயரம்
A=c24π+cl2
A=(c2)(c2π+l)
c சுற்றளவு; சாய்வு உயரம்.
  • உச்சிக்கோணம், உயரம்
A=πh2tanΘ2(tanΘ2+secΘ2)
Θ உச்சிக்கோணம், h உயரம்.

வட்டக்கோணப்பகுதி

கூம்பினை அதன் ஒரு சாய்கோட்டுத்துண்டின் வாயிலாக விரித்தால் கிடைக்கும் வடிவம் வட்டக்கோணப்பகுதியாக இருக்கும். இந்த வட்டக்கோணப்பகுதியின் அளவுகள்:

  • ஆரம் R
R=r2+h2
  • வில்லின் நீளம் L
L=c=2πr
ϕ=LR=2πrr2+h2

மேற்கோள்கள்

வார்ப்புரு:Reflist

"https://ta.wiki.beta.math.wmflabs.org/w/index.php?title=கூம்பு&oldid=68" இலிருந்து மீள்விக்கப்பட்டது