முக்கோண எண்

testwiki இலிருந்து
imported>Booradleyp1 பயனரால் செய்யப்பட்ட 06:18, 8 ஏப்ரல் 2024 அன்றிருந்தவாரான திருத்தம் (added Category:வார்த்தைகளற்ற நிறுவல்கள் using HotCat)
(வேறுபாடு) ← பழைய திருத்தம் | ஆக அண்மைய திருத்தம் (வேறுபாடு) | புதிய திருத்தம் → (வேறுபாடு)
Jump to navigation Jump to search
முதல் ஆறு முக்கோண எண்கள்.

வடிவவியலில் முக்கோண எண் (triangular number) என்பது வடிவ எண்களில் ஒரு வகையாகும். படத்தில் உள்ளவாறு, ஒரு முக்கோண எண் என்பது ஒரு சமபக்க முக்கோண வடிவில் ஒழுங்குபடுத்தத்தக்க ஒரு எண்ணாகும். (மரபின்படி, முதலாவது முக்கோண எண் 1 ஆகும்.) n -ஆம் முக்கோண எண் என்பது ஒரு பக்கத்திற்கு n புள்ளிகளெனக் கொண்ட சமபக்க முக்கோணத்துக்குள் அமையும் மொத்தப் புள்ளிகளின் எண்ணிக்கையாகும். ஒவ்வொரு வரிசையும் அதற்கு முன்னுள்ள வரிசையைக்காட்டிலும் ஒரு அலகு கூடுதலாக உள்ளது. இதன் மூலம் முதல் முக்கோண எண் 1; இரண்டாம் முக்கோண எண் 1+ 2 = 3; மூன்றாம் முக்கோண எண் 1 + 2 + 3 = 6;.... என இயல் எண் களின் கூட்டுத்தொகையாக ஒவ்வொரு முக்கோண எண்ணும் அமைவதைக் காணலாம். n -ஆம் முக்கோண எண்ணின் மதிப்பு 1 முதல் n வரையிலான இயல் எண்களின் கூடுதலுக்குச் சமமாக இருக்கும்.

முக்கோண எண்களின் தொடர்வரிசை வார்ப்புரு:OEIS:

1, 3, 6, 10, 15, 21, 28, 36, 45, 55,.....

வாய்பாடு

  • n -ஆம் முக்கோண எண்ணின் மதிப்பு 1 முதல் n வரையிலான இயல் எண்களின் கூடுதலுக்குச் சமம் என்பதால் முக்கோண எண்களுக்கான மீள்வரு வாய்ப்பாடு:
Tn=k=1nk=1+2+3++n=n(n+1)2=(n+12)

இவ்வாய்பாட்டை காட்சி நிறுவல் மூலம் விளக்கலாம்.[1]வலது இறுதியில் உள்ளது ஒரு ஈருறுப்புக் கெழு. இக்கெழு, n + 1 பொருள்களில் இருந்து தேர்ந்தெடுக்கக்கூடிய சோடிகளின் எண்ணிக்கையைத் தருகிறது. பெருக்கலில் உள்ள தொடர் பெருக்கத்தைப் போன்றவை கூட்டலுக்கு முக்கோண எண்கள். தொடர் பெருக்கம் n !, 1 முதல் n வரையிலான இயல் எண்களின் பெருக்கலுக்குச் சமம். முக்கோண எண் Tn, 1 முதல் n வரையிலான இயல் எண்களின் கூடுதலுக்குச் சமம்.

Ln=Ln1+3(n1)

புள்ளிகள் மற்றும் இக்கோடுகளின் எண்ணிக்கைகளுக்கு இடையிலான விகிதத்தின் குறிப்பிடத்தக்கதொரு பண்பு:

limnTnLn=13

ஒவ்வொரு முக்கோண எண் Tn க்கும், அதற்குச் சமமான என்ணிக்கையிலான பொருட்களை கீழேயுள்ள படத்திலுள்ளதுபோல ஒரு அரைச்-செவ்வக வடிவில் அமைப்பதாகக் கொள்ளலாம். இதே அமைப்பின் படிமத்தைச் சுழற்றி முழுச் செவ்வகமாக உருவாக்கினால் அதிலுள்ள பொருட்களின் எண்ணிக்கை இரட்டிப்பாவதோடு அச்செவ்வகத்தின் அளவானது n×(n+1) ஆக இருக்கும். மேலும் n×(n+1) இன் மதிப்பு செவ்வகத்திலுள்ள பொருட்களின் எண்ணிக்கைக்குச் சமமாகவும் இருக்கும். எனவே:

Tn=n(n+1)2.

எடுத்துக்காட்டு:

2T4=4(4+1)=20 (பச்சையும் மஞ்சளும்)
T4=4(4+1)2=10 (பச்சை)

இவ்வாய்பாட்டை கணிதத் தொகுத்தறிதல் முறையில் நிறுவமுடியும்.[2]

n=1 எனில், இவ்வாய்பாடு உண்மையாவதை எளிதாகக் காணலாம்:

T1=k=11k=1(1+1)2=22=1.

m என்ற இயலெண்ணுக்கு இவ்வாய்ப்பாடு மெய் என எடுத்துக்கொள்ள:

Tm=k=1mk=m(m+1)2.
இருபுறமும் m+1 ஐக் கூட்டக் கிடைப்பது:

k=1mk+(m+1)=m(m+1)2+m+1=m(m+1)+2m+22=m2+m+2m+22=m2+3m+22=(m+1)(m+2)2,

அதாவது, வாய்பாடு m என்ற மதிப்பிற்கு உண்மையாக இருக்கும்போது அது m+1 மதிப்பிற்கும் உண்மையாகிறது.

எனவே, கணிதத்தொகுத்தறிதலின்படி வாய்பாடு அனைத்து இயலெண் மதிப்புகளுக்கும் உண்மையாகும்.

வரலாறு

செருமானிய கணிதவியலாளர் கார்ல் பிரீடிரிக் காஸ், அவரது இளமைக்காலத்தில் இதனைக் கண்டறிந்ததாகக் கூறப்படுகிறது.[3] எனினும் இதனை முதன்முதலாகக் கண்டறிந்தவர் காஸ் அல்ல. கிமு 5 ஆம் நூற்றாண்டிலேயே இது அறியப்பட்டிருந்தது என்ற கருத்தும் உள்ளது[4] 816 இல், அயர்லாந்தைச் சேர்ந்த துறவி திக்குய்ல் என்பவரும் அவரது இயேசுவின் உயிர்த்தெழுதல் நாட்கணிப்பில் இதனைக் குறிப்பிட்டுள்ளார்.[5] திக்குய்லின் குறிப்புகளுக்கான ஆங்கில மொழிபெயர்ப்பும் உள்ளது.[6]

கைகுலுக்கல் சிக்கல்

"கைகுலுக்கல் சிக்கலுக்கான" தீர்வை முக்கோண எண் வார்ப்புரு:Math தருகிறது. வார்ப்புரு:Math நபர்கள் உள்ள ஓர் அறையில் ஒருவர் மற்ற ஒவ்வொருவருடனும் கைகுலுக்கினால் நிகழும் மொத்த கைகுலுக்கல்களின் எண்ணிக்கையை முக்கோண் எண் வார்ப்புரு:Math அளிக்கிறது In other words, the solution to the handshake problem of வார்ப்புரு:Math நபர்களின் கைகுலுக்கல் கணக்குக்கான விடை வார்ப்புரு:Math ஆகும்.[7]

தொடர்கூட்டல் சார்பு

அமெரிக்கக் கணினி அறிவியலாளரான டோனால்டு நத், தனது நூலில் n முழுஎண்களின் தொடர்பெருக்கத்துடன் ஒத்தவொன்றாக "தொடர்கூட்டல் சார்பு" ("Termial function") என்பதை உருவாக்கினார். [8] இத்தொடர்கூட்டலின் குறியீடு n? .இது முக்கோண எண் வார்ப்புரு:Math க்குச் சமம்.

தொடர் பெருக்கம்:

n! = 1.2.3....n

தொடர் கூட்டல்:

n?=1+2+3+4+5+...+n=n(n+1)2=Tn

எடுத்துக்காட்டாக:

10?=1+2+3+4+5+6+7+8+9+10=55=T(10)

ஏனைய வடிவ எண்களுடனான தொடர்பு

முக்கோண எண்கள் மற்ற வடிவ எண்களோடு அதிகத் தொடர்புடையன.

எடுத்துக்காட்டுகள்:

Tn+Tn1=(n22+n2)+((n1)22+n12)=(n22+n2)+(n22n2)=n2=(TnTn1)2.
6 + 10 = 16     10 + 15 = 25

மேலேயுள்ள ஒவ்வொரு எடுத்துக்காட்டிலும், இரண்டு பொருந்துகின்ற முக்கோணங்களிலிருந்து ஒரு சதுரம் அமைவதைக் காணலாம்.

  • எண்ணற்ற முக்கோண எண்கள் வர்க்க எண்களாகவும் அமைகின்றன. அவற்றுள் சிலவற்றை பின்வரும் மீள்வரு வாய்ப்பாட்டைப் பயன்படுத்திக் காணலாம்:
Sn+1=4Sn(8Sn+1). இதில், S1=1.

அனைத்து வர்க்க முக்கோண எண்களையும் பின்வரும் மீள்வரு வாய்ப்பாட்டைப் பயன்படுத்திக் காணலாம்.

Sn=34Sn1Sn2+2.
இதில் S0=0 மற்றும் S1=1.
  • n -ஆம் முக்கோண எண்ணின் வர்க்கம் 1 முதல் n வரையிலான முழு எண்களின் கனங்களின் கூடுதலுக்குச் சமம்.
Tn2=k=1nk3=13+23+33++n3=(n(n+1)2)2
T1+T2+T3+....+Tn=(n)(n+1)(n+2)6.
  • பொதுவாக, n -ஆம் m -பலகோண எண் மற்றும் n -ஆம் (m + 1)-பலகோண எண்ணிற்குமுள்ள வித்தியாசம் (n – 1) -ஆம் முக்கோண எண்ணாக அமையும்.

எடுத்துக்காட்டு:

ஆறாம் எழுகோண எண் = 81. ஆறாம் அறுகோண எண் = 66
இவற்றின் வித்தியாசம் = 81 – 66 = 15. இது ஐந்தாம் முக்கோண எண்ணாகும். முக்கோண எண்களைப் பயன்படுத்தி எந்தவொரு மையப்படுத்தப்பட்ட பலகோண எண்ணையும் காணமுடியும்.

n -ஆம் மையப்படுத்தப்பட்ட k-கோண எண்ணைக் காணும் வாய்ப்பாடு:

Ckn=kTn1+1. 
இங்கு T(n1) -முக்கோண எண்;
Ckn -n -ஆம் மையப்படுத்தப்பட்ட k-கோண எண்.

இரு முக்கோண எண்களின் நேர்ம வித்தியாசம் ஒரு சரிவக எண்.

மேற்கோள்கள்

வார்ப்புரு:சான்று

வெளி இணைப்புகள்

வார்ப்புரு:Commonscat

இவற்றையும் பார்க்கவும்

  1. வார்ப்புரு:Cite web
  2. வார்ப்புரு:Cite book
  3. வார்ப்புரு:Cite web
  4. வார்ப்புரு:Cite web
  5. Esposito, M. An unpublished astronomical treatise by the Irish monk Dicuil. Proceedings of the Royal Irish Academy, XXXVI C. Dublin, 1907, 378-446.
  6. Ross, H.E. & Knott, B.I."Dicuil (9th century) on triangular and square numbers." British Journal for the History of Mathematics, 2019,34 (2), 79-94. https://doi.org/10.1080/26375451.2019.1598687.
  7. வார்ப்புரு:Cite web
  8. வார்ப்புரு:Cite book
"https://ta.wiki.beta.math.wmflabs.org/w/index.php?title=முக்கோண_எண்&oldid=5" இலிருந்து மீள்விக்கப்பட்டது