முடிவிலி

முடிவிலி (Infinity, குறியீடு: வார்ப்புரு:Math) என்பது ”வரம்பற்ற” என்பதைக் குறிக்கும் ஒரு நுண் கருத்தினமாகும். முடிவிலியின் தன்மை குறித்து பல மெய்யியலாளர்கள் முன்னுணர்ந்துள்ளனர்.N[எலியாவின் சீனோ]] முடிவிலி தொடர்பான பல முரண்புதிர்களை முன்மொழிந்துள்ளார். நீடியோசின் யூடாக்சசு தனது இறுதி தீர்வில் முடிவிலாத சிற்றெண்கள் பற்றிக் கூறுகிறார். இக்கருத்தினம், பல துறைகளின் நடைமுறையிலும் கோட்பாட்டிலும் பயன்பட்டாலும், கணிதத்திலும் இயற்பியலிலும் முதன்மையான பயன்பா ட்டைக் கொண்டுள்ளது. முடிவிலி, கணிதத்தில் ஓர் எண்ணைப் போன்றே கையாளப்பட்டாலும், உண்மையில் அது இயல் எண்கள், மெய்யெண்கள் போன்றதோர் எண்ணன்று.[1]
பொ.ஊ. 19ஆம் நூற்றாண்டின் இறுதியிலும் 20ஆம் நூற்றாண்டின் தொடக்கத்திலும், முடிவிலி, முடிவிலி கணம் தொடர்பான கருத்துக்களைக் கணிதவியலாளர் கியார்கு காண்ட்டர் முறைப்படுத்தியுள்ளார். அவரால் மேம்படுத்தப்பட்ட கோட்பாடுகள், வேறுபட்ட எண்ணளவைகள் கொண்ட முடிவிலி கணங்களைக் கொண்டிருந்தன.[2] எடுத்துக்காட்டாக, முழு எண்களின் கணங்கள், எண்ணவியன்ற முடிவிலிகணம்; மெய்யெண்களின் கணம் எண்ணவியலா முடிவிலி கணம் ஆகியவற்றைக் கூறலாம்.[3]
வரலாறு
பண்டைய பண்பாடுகள் முடிவிலி குறித்து பல்வேறு எண்ணக்க்கருக்களைக் கொண்டிருந்தன. பண்டைய இந்தியர்களும் கிரேக்கர்களும் புத்தியல் கணிதத்தைப் போல துல்லியமான முறைவழி வரையறுக்கவில்லை. ஆனால் மெய்யியல் கருத்தினமாக அதை விளக்கினர்.
தொடக்கநிலைக் கிரேக்கம்
முடிவிலி பற்றிய மிகப் பழைய எண்ணக்கரு மிலேத்தெசில் வாழ்ந்த முது சாக்கிரட்டிய மெய்யியலாளராகிய [[அனாக்சிமாந்தர்|அனாக்சிமாந்தரால் பதிவாகியுள்ளது. முடிவிலா அல்லது வரம்பிலா எனும் பொருள்கொண்ட அப்பெய்ரான் எனும் சொல்லை இக்கருத்தினத்தைக் குறிக்க பயன்படுத்தியுள்ளார்.[4] என்றாலும், மிகப் பழைய கணிதவியலான விளக்கம் பொ.ஊ.மு. 490 இல் பிறந்த எலியாவின் சீனோ அவர்களால் தரப்பட்டுள்ளது. இவரும் தென் இத்தாலியைச் சார்ந்த முந்து சாக்கிரட்டிய மெய்யியலாளர் ஆவார். இவர் பர்மெனிடெசு நிறுவிய எலியாட்டிய மெய்யியல் பள்ளியின் உறுப்பினர் ஆவார். அரிசுடாட்டில் இவரை இணைமுரணியலின் நிறுவனராகக் கூறுகிறார்.[5][6] இவர் தனதுபெயரில் நிலவும் சீனொ முரண்புதிர்களுக்குப் பெயர் போனவர்.[5] இவற்றைப் பெர்டிட்ரேண்டு இரசல் s "அள்விலாத நுட்பமும் தெளிவும் வாய்ந்தவை" எனக் கூறுகிறார்.[7]
அரிசுடாட்டிலின் மரபுவழிக் கண்ணோட்டத்தில், எலனியக் காலக் கிரேக்கர்கள் பொதுவாக உண்மை முடிவிலியில் இருந்து வாய்ப்புறு முடிவிலியை வேறுபடுத்திப் பார்க்க விரும்பினர்; எடுத்துகாட்டாக, முடிவில்லாத முதன்மை எண்கள் என்பதற்கு மாறாக, குறிப்பிட்ட முதன்மை எண்களின் தொகுப்பில் உள்ளதைவிட உண்மையில் மேலும் கூடுதலான முதன்மை எண்கள் நிலவுகின்றன என யூக்கிளிடு கூற விரும்புகிறார்.[8]
என்றாலும் அன்மைய ஆர்க்கிமெடீசு பாலிம்ப்செட்டின் வாசிப்பின்படி, இவர் உண்மை முடிவிலி அளவுகளின் புரிதலைப் பற்றிய தெளிவைப் பெற்றிருந்துள்ளார். Nonlinear Dynamic Systems and Controlsஎனும் நூலின்படி, இவர்தான் முதன்முதலில் துல்லியமான கணித நிறுவல்களைக் கொண்டு முடிவிலாத பெரிய கணங்களுடன் முடிவிலியின் அறிவியலை நுட்பமாக ஆய்வு செய்தவர் ஆவார்."."[9]
தொடக்கநிலை இந்தியா
இந்திய சைனக் கணிதப் பாடநூலாகிய சூரியப்பிரசாப்தி (பொ.ஊ.மு. 4ஆம்–3 ஆம் நூற்றாண்டு) அனைத்து எண்களையும் மூன்று கணங்களாகப் பின்வருமாறு வகைபடுத்துகிறது: எண்ணவியன்றன, எண்ணவியலாதன, முடிவிலி. இவற்ரில் ஒவ்வொன்றும் மேலும் மூன்று வரிசைகளாக பிரிக்கப்படுகின்றன:[10]
- எண்ணவியன்றவை: தாழ்மதிப்பின, இடைநிலையானவை, உயர்மதிப்பின
- எண்ணவியலாதவை: ஓரளவு எண்ணவியலாதவை, உண்மையில் எண்ணவியலாதவை, அளவிலாமல் எண்ணவியலாதவை
- முடிவிலி: ஓரளவு முடிவிலி, உண்மை முடிவிலி, முடிவிலாத முடிவிலி
இந்நூலில் இரு தெளிவான முடிவிலி வகைகள் கூறப்பட்டுள்ளன. இவை புறநிலையாகவும் இருப்பியலாகவும் (மெய்யியல்) அசங்கியதா (asaṃkhyāta) (எண்ணமுடியா எண்ணவியலாதவை) அனந்தா ( Ananta )("முடிவிலா முடிவிலி") என விளக்கப்படுகின்றன. இவை முறையே கருக்கான வரம்புள்ள முடிவிலியையும் சற்றே தளர்வான வரம்புள்ள முடிவிலியையும் குறிக்கின்றன.[11]
கணிதம்
முடிவிலிக் குறி
முடிவிலி என்ற கருத்தினம், கணிதத்தில் ஆல் குறிக்கப்படுகிறது. இக்குறி 1655 இல், ஜான் வாலிசால் அறிமுகப்படுத்தப்பட்டது.[12][13]. கணிதத்தில் மட்டுமல்லாது பிற துறைகளிலும் இக்குறியே முடிவிலிக்குப் பயன்படுத்தப்படுகிறது.[14][15]
நுண்கணிதம்
நுண்கணிதக்கண்டுபிடிப்பாளர்களுள் ஒருவரான லைபினிட்சு, முடிவிலி எண்களின் கணிதப் பயன்பாடுகள் குறித்த ஊகங்களை அளித்துள்ளார். லைபினிட்சின் கருத்துப்படி நுண்ணளவுகளும் முடிவிலி அளவுகளும் ஒரேயியல்பானவை அல்ல; எனினும் அவை தொடர்ச்சி விதிக்கேற்ற, ஒத்த பண்புகளைக் கொண்டவையாகும்.[16][17]
மெய்ப் பகுப்பியல்
மெய்ப் பகுப்பியலில், முடிவிலி என அழைக்கப்படும் குறியீடு, வரம்பற்ற எல்லையைக் குறிப்பதற்குப் பயன்படுத்தப்படுகிறது.[18] என்பது x இன் மதிப்பு வரம்பில்லாமல் அதிகரித்துக் கொண்டே போகிறது என்பதையும் என்பது x இன் மதிப்பு வரம்பில்லாமல் குறைந்து கொண்டே போகிறது என்பதையும் குறிக்கும்.
t இன் எல்லா மதிப்புகளுக்கும் f(t) ≥ 0 ஆக இருக்கும்பொழுது:[19]
- எனில், இலிருந்து வரை f(t) இன் கீழ் எந்த முடிவிலி பரப்பும் இருக்காது.
- எனில், f(t) இன் கீழமையும் பரப்பு முடிவிலியாகும்.
- எனில், f(t) கீழுள்ள முழுப்பரப்பும் முடிவிலியாகவும் க்குச் சமமானதாகவும் இருக்கும்.
தொடர்களை விவரிப்பதற்கும் முடிவிலி பயன்படுத்தப்படுகிறது:
- எனில், இந்த முடிவிலித் தொடர், என்ற மெய்யெண் மதிப்பிற்கு ஒருங்குகிறது என அறியலாம்.
- எனில், இது ஒரு விரிதொடரென அறியலாம்.
தொடர்வு (Sequence)களை முடிவுறு தொடர்வு என்றும் முடிவுறாத் தொடர்வு என்றும் இருவகைப்படுத்தலாம். முடிவுறு தொடர்வு என்பது முடிவு தெரிந்த (அல்லது தெரியப்படுத்தப்பட்ட) தொடர்வு என்று கொள்ளலாம். எடுத்துக்காட்டாக,
- 1, 2, 3, ..., 10.
என்ற தொடர்வில் 10 உறுப்புகள் உள்ளன.
என்ற தொடர்வில் 100 உறுப்புகள் உள்ளன.
இவை முடிவுறு தொடர்கள் எனப்படும். மாறாக,
- 1,2,3, ...
என்று முடிவே இல்லாமல் இருக்கும் தொடர்வு முடிவுறாத்தொடர்வு. இத்தொடர் முடிவிலா உறுப்புக்கள் உள்ளன என்பதே சரியான கூற்று. மாறாக இத்தொடரிலுள்ள உறுப்புகளின் எண்ணிக்கை என்பது சரியாகாது. ஒரு முடிவிலா கணத்தில் எவ்வளவு உறுப்புக்கள் உள்ளன என்பதை அலசுவதற்குத்தான் எண்ணுமை (Countability) எண்ணவியலாமை (Uncountability) என்ற கருத்துக்கள் உருவாக்கப்பட்டன.
- 1,2,3, ...
- 2,4,6, ...
- ... -3, -2, -1, 0, 1, 2, 3, ...
ஆக இந்த மூன்று தொடர்வுகளும் ஒரே "எண்ணளவை" யுள்ள கணங்கள் என்ற கருத்து ஒரு நுண்புலக் கணிதக் கருத்து. இதனுடைய விவரங்களை எண்ணுறுமையும் எண்ணுறாமையும் கட்டுரையில் காணலாம்
மேற்கோள்கள்
உசாத்துணை
- வார்ப்புரு:Citation
- வார்ப்புரு:Citation
- வார்ப்புரு:Citation
- வார்ப்புரு:Cite book
- வார்ப்புரு:Citation
- வார்ப்புரு:Citation
- வார்ப்புரு:Cite book
தகவல் வாயில்கள்
- வார்ப்புரு:Cite book
- D. P. Agrawal (2000). Ancient Jaina Mathematics: an Introduction, Infinity Foundation.
- Bell, J. L.: Continuity and infinitesimals. Stanford Encyclopedia of philosophy. Revised 2009.
- வார்ப்புரு:Cite book
- Jain, L. C. (1973). "Set theory in the Jaina school of mathematics", Indian Journal of History of Science.
- வார்ப்புரு:Cite book
- H. Jerome Keisler: Elementary Calculus: An Approach Using Infinitesimals. First edition 1976; 2nd edition 1986. This book is now out of print. The publisher has reverted the copyright to the author, who has made available the 2nd edition in .pdf format available for downloading at http://www.math.wisc.edu/~keisler/calc.html
- வார்ப்புரு:Cite book
- O'Connor, John J. and Edmund F. Robertson (1998). 'Georg Ferdinand Ludwig Philipp Cantor' வார்ப்புரு:Webarchive, MacTutor History of Mathematics archive.
- O'Connor, John J. and Edmund F. Robertson (2000). 'Jaina mathematics' வார்ப்புரு:Webarchive, MacTutor History of Mathematics archive.
- Pearce, Ian. (2002). 'Jainism', MacTutor History of Mathematics archive.
- வார்ப்புரு:Cite book
- வார்ப்புரு:Cite book
வெளி இணைப்புகள்
வார்ப்புரு:Wiktionary வார்ப்புரு:Wikibooks வார்ப்புரு:Commons category
- வார்ப்புரு:Cite IEP
- வார்ப்புரு:In Our Time
- A Crash Course in the Mathematics of Infinite Sets வார்ப்புரு:Webarchive, by Peter Suber. From the St. John's Review, XLIV, 2 (1998) 1–59. The stand-alone appendix to Infinite Reflections, below. A concise introduction to Cantor's mathematics of infinite sets.
- Infinite Reflections வார்ப்புரு:Webarchive, by Peter Suber. How Cantor's mathematics of the infinite solves a handful of ancient philosophical problems of the infinite. From the St. John's Review, XLIV, 2 (1998) 1–59.
- வார்ப்புரு:Cite web
- Infinity, Principia Cybernetica
- Hotel Infinity
- John J. O'Connor and Edmund F. Robertson (1998). 'Georg Ferdinand Ludwig Philipp Cantor' வார்ப்புரு:Webarchive, MacTutor History of Mathematics archive.
- John J. O'Connor and Edmund F. Robertson (2000). 'Jaina mathematics' வார்ப்புரு:Webarchive, MacTutor History of Mathematics archive.
- Ian Pearce (2002). 'Jainism', MacTutor History of Mathematics archive.
- Source page on medieval and modern writing on Infinity
- The Mystery Of The Aleph: Mathematics, the Kabbalah, and the Search for Infinity
- Dictionary of the Infinite (compilation of articles about infinity in physics, mathematics, and philosophy)
- ↑ வார்ப்புரு:Cite web
- ↑ வார்ப்புரு:Cite book Extract of page 616
- ↑ வார்ப்புரு:Harvnb
- ↑ வார்ப்புரு:Harvnb
- ↑ 5.0 5.1 வார்ப்புரு:Cite web
- ↑ வார்ப்புரு:Cite web
- ↑ வார்ப்புரு:Harvnb
- ↑ Euclid. Euclid's Elements, Book IX, Proposition 20.
- ↑ வார்ப்புரு:Cite book
- ↑ வார்ப்புரு:Cite book
- ↑ வார்ப்புரு:Cite journal
- ↑ வார்ப்புரு:Citation.
- ↑ வார்ப்புரு:Citation.
- ↑ வார்ப்புரு:Citation.
- ↑ வார்ப்புரு:Citation.
- ↑ வார்ப்புரு:SEP
- ↑ வார்ப்புரு:Cite journal
- ↑ வார்ப்புரு:Harvnb
- ↑ These uses of infinity for integrals and series can be found in any standard calculus text, such as, வார்ப்புரு:Harvnb