நேர்கோட்டமைவு: திருத்தங்களுக்கு இடையிலான வேறுபாடு

testwiki இலிருந்து
Jump to navigation Jump to search
imported>Booradleyp1
 
(வேறுபாடு ஏதுமில்லை)

05:55, 11 திசம்பர் 2022 இல் கடைசித் திருத்தம்

வடிவவியலில், புள்ளிகளின் நேர்கோட்டமைவு (collinearity) அல்லது நேர்கோட்டிலமைதல் என்பது எடுத்துக்கொள்ளப்பட்ட புள்ளிகளெல்லாம் ஒரே கோட்டின்மீது அமைவதைக் குறிக்கும்.[1] ஒரே கோட்டின்மீது அமையும் புள்ளிகள், "ஒருகோட்டுப் புள்ளிகள்" (collinear points) என அழைக்கப்படும்.[2]).

யூக்ளீடிய வடிவவியலில் எடுத்துக்காட்டுகள்

முக்கோணங்கள்

எந்தவொரு முக்கோணத்திலும் பின்வரும் புள்ளிகள் ஒரே கோட்டிலமைபவை:

P1A2P2A3P3A1=P1A3P2A1P3A2.

நாற்கரங்கள்

  • குவிவு நாற்கரம் ABCD இன் எதிர்பக்கங்கள் வெட்டும் புள்ளிகள் E, F. AC, BD, EF இன் நடுப்புள்ளிகள் ஒரேக்கோட்டிலமைகின்றன. மேலும் அக்கோடு, நியூட்டன் கோடு என அழைக்கப்படும். நாற்கரம், தொடு நாற்கரமாக இருந்தால், அதன் உள்வட்ட மையமும் இதே கோட்டின் மீதிருக்கும்.[6]
  • தொடு சரிவகத்தில் அதன் இரு இணைபக்கங்கங்களை உள்வட்டம் தொடும் புள்ளிகளும் உள்வட்ட மையமும் நேர்கோட்டமைபவை.
  • தொடு சரிவகத்தின் தாங்கி பக்கங்களின் நடுப்புள்ளிகளும் உள்வட்ட மையமும் ஒருகோட்டுப்புள்ளிகள்.

கூம்பு வெட்டுகள்

நான்முகிகள்

  • ஒரு நான்முகியின் சுற்றுவட்ட மையம் மற்றும் மாஞ்சு புள்ளியின் (நான்முகியின் ஆறு நடுத்தளங்கள் சந்திக்கும் புள்ளி) நடுப்புள்ளியானது, நான்முகியின் திணிவு மையமாகும். இம்மூன்று புள்ளிகளும் நான்முகியின் ஆய்லர் கோட்டின் மீதமைகின்றன. நான்முகியின் ஆய்லர் கோடானது ஒரு முக்கோணத்தின் ஆய்லர் கோட்டிற்கு ஒத்த கருத்துருவாகும்.

இயற்கணிதம்

ஆயதொலைவுகள் தரப்பட்டுள்ள புள்ளிகளின் நேர்கோட்டமைவு

பகுமுறை வடிவவியலில் n-பரிமாண வெளியிலமைந்த மூன்று அல்லது அதற்கு மேற்பட்ட வேறுபட்ட புள்ளிகளின் ஆயதொலைவுகளின் அணியின் தரம் 1 அல்லது அதற்கும் குறைந்ததாக "இருந்தால், இருந்தால் மட்டுமே" அப்புள்ளிகள் ஒருகோட்டுப் புள்ளிகளாக இருக்கும்.

எடுத்துக்காட்டாக, X = (x1x2, ... , xn), Y = (y1y2, ... , yn), and Z = (z1z2, ... , zn) என்ற மூன்று புள்ளிகளின் ஆயதொலைவுகள் அணி

[x1x2xny1y2ynz1z2zn]

இந்த அணியின் தரமானது 1 அல்லது அதைவிடச் சிறியதாக இருந்தால் அம்மூன்று புள்ளிகளும் ஒரே கோட்டிலமையும்.

இதற்குச் சமானமாக,

X = (x1x2, ... , xn), Y = (y1y2, ... , yn), and Z = (z1z2, ... , zn) ஆகிய மூன்று புள்ளிகளடங்கிய ஒவ்வொரு உட்கணத்திற்கும் கீழ்வரும் அணியின் தரம் 2 அல்லது அதைவிடச் சிறியதாக இருந்தால் அம்மூன்று புள்ளிகளும் ஒரே கோட்டிலமையும்.

[1x1x2xn1y1y2yn1z1z2zn]

குறிப்பாக, ஒரு தளத்திலமைந்த (n = 2) மூன்று புள்ளிகளுக்கு மேற்கண்ட அணி ஒரு சதுர அணியாக இருக்கும்; மேலும் அவ்வணியின் அணிக்கோவையின் மதிப்பு பூச்சியமாக இருந்தால், இருந்தால் மட்டுமே, அம்மூன்று புள்ளிகளும் ஒரு கோட்டிலமையும். இந்த அணிக்கோவையானது அம்மூன்று புள்ளிகளை உச்சிகளாகக்கொண்ட முக்கோணத்தின் பரப்பளவில் இரு மடங்காகும். எனவே தரப்பட்ட மூன்று புள்ளிகளை உச்சிகளாகக் கொண்ட முக்கோணத்தின் பரப்பளவு பூச்சியமாக இருந்தால், இருந்தால் மட்டுமே அவை ஒரு கோட்டுப்புள்ளிகளாக இருக்கும்.

சோடிவாரியாக தொலைவுகள் தரப்பட்ட புள்ளிகளின் நேர்கோட்டமைவு

குறைந்தபட்சம் மூன்று புள்ளிகள்கொண்ட எடுத்துக்கொள்ளப்பட்ட புள்ளிகளில், ஒவ்வொரு மூன்று A, B, C புள்ளிகளுக்கும் பின்வரும் அணிக்கோவையின் மதிப்பு பூச்சியமாக இருந்தால், இருந்தால் மட்டுமே, அப்புள்ளிகள் எல்லாம் நேர்கோட்டமைவு கொண்டவையாக இருக்கும். (d(AB) என்பது A, B புள்ளிகளுக்கு இடைப்பட்ட தூரத்தைக் குறிக்கிறது):

det[0d(AB)2d(AC)21d(AB)20d(BC)21d(AC)2d(BC)2011110]=0.

ஈரோனின் வாய்பாட்டின்படி இந்த அணிக்கோவ்வையின் மதிப்பு, d(AB), d(BC), d(AC) மூன்றையும் பக்க நீளங்களாகக் கொண்ட முக்கோணத்தின் பரப்பளவின் வர்க்கத்தின் − 16 மடங்காகும். எனவே இந்த அணிக்கோவையின் மதிப்பு பூச்சியமா என்பதைக் காண்பது, A, B, C புள்ளிகளை உச்சிகளாகக் கொண்ட முக்கோணத்தின் பரப்பளவு பூச்சியமா என்பதைக் காண்பதற்குச் சமானமாகும் (எனவே உச்சிகள் ஒருகோட்டிலமையும்).

சமானமாக, குறைந்தபட்சம் மூன்று புள்ளிகள்கொண்ட எடுத்துக்கொள்ளப்பட்ட புள்ளிகளில், ஒவ்வொரு மூன்று A, B, C புள்ளிகளுக்கும் பின்வரும் சமனிலி

d(AC) ≤ d(AB) + d(BC)
(d(AB) , d(BC) ஒவ்வொன்றையும் விட d(AC) பெரியது)

உண்மையாக இருந்தால், இருந்தால் மட்டுமே (சமக்குறியுடன்), அம்மூன்று புள்ளிகளும் ஒரே கோட்டிலமையும்.

எண் கோட்பாடு

m , n ஆகிய இரு எண்களுக்கு (0, 0), (m, 0), (mn), (0, n) புள்ளிகளை உச்சிகளாகக் கொண்டு ஒரு சதுரப் பின்னலில் குறிக்கப்பட்ட செவ்வகத்தின் குறைந்தபட்சம் ஒரு உள்ளமை புள்ளியாவது (0, 0), (mn) புள்ளிகளுடன் நேர்கோட்டமைவு கொண்டிருந்தால், இருந்தால் மட்டுமே m , n இரண்டும் சார்பகா எண்களாக இருக்காது..

குறிப்புகள்

வார்ப்புரு:Reflist

மேற்கோள்கள்

  1. The concept applies in any geometry வார்ப்புரு:Harvtxt, but is often only defined within the discussion of a specific geometry வார்ப்புரு:Harvtxt, வார்ப்புரு:Harvtxt
  2. Colinear (Merriam-Webster dictionary)
  3. 3.0 3.1 Johnson, Roger A., Advanced Euclidean Geometry, Dover Publ., 2007 (orig. 1929).
  4. Altshiller-Court, Nathan. College Geometry, Dover Publications, 1980.
  5. Scott, J. A. "Some examples of the use of areal coordinates in triangle geometry", Mathematical Gazette 83, November 1999, 472–477.
  6. Dušan Djukić, Vladimir Janković, Ivan Matić, Nikola Petrović, The IMO Compendium, Springer, 2006, p. 15.
"https://ta.wiki.beta.math.wmflabs.org/w/index.php?title=நேர்கோட்டமைவு&oldid=1600" இலிருந்து மீள்விக்கப்பட்டது