முக்கோண அணி

testwiki இலிருந்து
Jump to navigation Jump to search

நேரியல் இயற்கணிதத்தில் முக்கோண அணி (triangular matrix) என்பது ஒரு சிறப்புவகை சதுர அணியாகும். ஒரு சதுர அணியின் முதன்மை மூலைவிட்டத்திற்கு மேலமையும் உறுப்புகள் அனைத்தும் பூச்சியமாக இருந்தால் அச்சதுர அணி கீழ் முக்கோண அணி (lower triangular) எனப்படும். அதேபோல முதன்மை மூலைவிட்டத்திற்கு கீழமையும் உறுப்புகள் அனைத்தும் பூச்சியமாக இருந்தால் மேல் முக்கோண அணி (upper triangular) எனப்படும். கீழ் அல்லது மேல் முக்கோண அணியாக அமையும் அணிகள் முக்கோண அணிகள் எனப்படும். மூலைவிட்ட அணியானது கீழ் மற்றும் மேல் முக்கோண அணியாக இருக்கும். அதாவது மூலைவிட்ட அணியின் முதன்மை மூலைவிட்டத்திற்கு மேலும் கீழும் அமையும் உறுப்புகள் எல்லாம் பூச்சியமாக அமையும்.

அணிச் சமன்பாடுகளிலுள்ள அணிகள் முக்கோண அணிகளாக இருந்தால் அதனைத் தீர்ப்பது எளிது என்பதால் எண்சார் பகுப்பியலில் முக்கோண அணிகள் அதிகம் பயனுள்ளவையாக உள்ளன.

விளக்கம்

கீழுள்ள வடிவில் அமையும் அணி கீழ் முக்கோண அணி அல்லது இடது முக்கோண அணியாகும்:

L=[1,102,12,23,13,2n,1n,2n,n1n,n]

கீழுள்ள வடிவில் அமையும் அணி மேல் முக்கோண அணி அல்லது வலது முக்கோண அணியாகும்:

U=[u1,1u1,2u1,3u1,nu2,2u2,3u2,nun1,n0un,n]

கீழ் மற்றும் மேல் முக்கோண அணியாகவுள்ள அணி, ஒரு மூலைவிட்ட அணியாகும்.

எடுத்துக்காட்டுகள்

மேல் முக்கோண அணி
[14100034001]
கீழ் முக்கோண அணி
[100280497]

சிறப்பு வகைகள்

அலகுமுக்கோண அணி

ஒரு மேல் (கீழ்) முக்கோண அணியின் முதன்மை மூலைவிட்ட உறுப்புகள் அனைத்தும் 1 ஆக இருக்குமானால் அந்த அணியானது (மேல் அல்லது கீழ்) அலகுமுக்கோண அணி (Unitriangular matrix) எனப்படும். அலகுமுக்கோண அணியும் அலகு அணியும் ஒன்றல்ல; வெவ்வேறானவை. மேல் மற்றும் கீழ் அலகுமுக்கோண அணியாகவுள்ளது அலகுஅணி மட்டுமே ஆகும்.

எடுத்துக்காட்டுகள்

மேல் அலகுமுக்கோண அணி
[11310015001]
கீழ் முக்கோண அணி
[1005101031]

கண்டிப்பாக முக்கோண அணி

ஒரு மேல் அல்லது கீழ் முக்கோண அணியின் முதன்மை மூலைவிட்ட உறுப்புகளெல்லாம் 0 ஆக இருந்தால் அம்முக்கோண அணி கண்டிப்பாக முக்கோண அணி (Strictly triangular matrix) ஆகும்.

சிறப்புப் பண்புகள்

  • மேல் முக்கோண அணியின் இடமாற்று அணி கீழ்முக்கோண அணியாகவும், கீழ்முக்கோண அணியின் இடமாற்று அணி மேல் முக்கோண அணியாகவும் இருக்கும்.
  • ஒரு முக்கோண அணியின் அணிக்கோவையின் மதிப்பு, அணியின் முதன்மை மூலைவிட்ட உறுப்புகளின் பெருக்குத்தொகைக்குச் சமமாக இருக்கும்.
  •  A ஒரு முக்கோண அணி எனில் λIA உம் ஒரு முக்கோண அணியாக இருக்கும் என்பதால் A இன் மூலைவிட்ட உறுப்புகள், A இன் ஐகென் மதிப்புகளைத் தரும்.[1]

மேற்கோள்கள்

வார்ப்புரு:Reflist வார்ப்புரு:Refbegin

வார்ப்புரு:Refend

வெளியிணைப்புகள்

"https://ta.wiki.beta.math.wmflabs.org/w/index.php?title=முக்கோண_அணி&oldid=1225" இலிருந்து மீள்விக்கப்பட்டது