கட்ட அணி
கணிதத்தில், கட்ட அணி அல்லது பிரிக்கப்பட்ட அணி (block matrix அல்லது partitioned matrix) என்பது கட்டங்கள் என அழைக்கப்படும் உள்ளணிகளாகக் பிரிக்கப்பட்ட ஒரு அணியாகும்.[1] அணியினுள் வரையப்படும் குறுக்கு, நெடு கோடுகளால் கட்டங்களாகப் பிரிக்கப்பட்டு ஒவ்வொரு கட்டத்துக்குள்ளும் ஒரு உள்ளணி கொண்டதொரு அணியாகக் கட்ட அணியின் தோற்றத்தைக் கொள்ளலாம்.[2] எந்தவொரு அணியையும் அதன் நிரைகளயும் நிரல்களையும் கட்டங்களாகப் பிரிக்கும் விதங்களால் அவ்வணியை வெவ்வேறு கட்ட அணிகளாகக் கொள்ளமுடியும்.
எடுத்துக்காட்டு

- இந்த அணியை நான்கு 2×2 கட்டங்களெனப்படும் உள்ளணிகளாகப் பிரிக்கலாம்:
- எடுத்துக்கொண்ட அணியைக் கட்ட அணியாக எழுத:
கட்ட அணிகளின் பெருக்கல்
இரு கட்ட அணிகளைப் பெருக்குதல் முடியும். இரு அணிகளின் குறிப்பற்ற கட்டப் பிரிப்புகளுக்கும் பெருக்கல் சாத்தியமாகாது. கட்டங்களாக அமையும் உள்ளணிகள் அணிப்பெருக்கல் வரையறைக்கு ஏற்றதாக அமையும் பிரிப்புகளுக்கு மட்டுமே இரு கட்ட அணிகளைப் பெருக்குதல் இயலும்.[3]
எடுத்துக்கொள்ளப்படும் இரு அணிகள்:
- நிரைப் பிரிப்புகளும் நிரல் பிரிப்புகளும் கொண்ட வரிசையணி
- நிரைப் பிரிப்புகளும் நிரல் பிரிப்புகளும் கொண்ட வரிசையணி
- பிரிப்பு உள்ளணிகளோடு இன் பிரிப்பு உள்ளணிகள் அணிப்பெருக்கலுக்கு இணக்கமானவையாக இருந்தால் இவ்விரு அணிகளின் பெருக்கற்பலன்
- அணியை நிரைப் பிரிப்புகளும் நிரல் பிரிப்புகளும் கொண்ட வரிசையணியாகப் பெறலாம்.
- அணியின் கட்டங்களாக அமையும் அணிகள் கீழுள்ள இரு வகைப் பெருக்கல் மூலமாகக் கணக்கிடப்படும்:
-
- அல்லது
நேர்மாற்றல்
நான்கு கட்டங்களாகப் பிரிக்கப்பட்ட அணியின் நேர்மாற்ற அணியையும் கட்ட அணியாகக் காணலாம்:
|
|
இதில் A, B, C , D பிரிப்புகளின் அளவுகள் குறிப்பற்றவை; A , D நேர்மாற்றத்தக்கதாக இருப்பதற்காக, அவை கட்டாயமாக சதுர அணிகளாக இருக்க வேண்டும். மேலும் A , D−CA−1B அணிகள் வழுவிலா அணிகளாகவும் இருக்க வேண்டும்.[4])
இதற்குச் சமானமானதாக, நேர்மாறைக் கீழுள்ளவாறும் கணக்கிடலாம்:
|
|
கட்ட மூலைவிட்ட அணிகள்
கட்ட மூலைவிட்ட அணி என்பது முதன்மை மூலைவிட்ட உறுப்புகளை சதுரக் கட்ட அணிகளாவும் ஏனைய உறுப்புகளை பூச்சியக் கட்ட அணிகளாவும் கொண்டதொரு கட்ட அணியாகும்.
- கட்ட மூலைவிட்ட அணி A இன் அமைப்பு:
இதில் Ak சதுர அணி; அதாவது A1, …, An ஆகியவற்றின் நேரிடிக் கூட்டல் (Direct sum) A1 A2 An ஆகும். எந்தவொரு சதுர அணியையும் ஒரேயொரு கட்டங்கொண்ட கட்ட அணியாகக் கருதலாம்.
அணிக்கோவைக்கும் சுவட்டிற்கும் கீழ்வரும் பண்புகள் உண்மையாகும்:
- ,
ஒரு கட்ட மூலைவிட்ட அணியின் நேர்மாறு அணி என்பது மூல அணியின் ஒவ்வொரு கட்ட அணிகளின் நேர்மாறு அணிகளைக் கட்டங்களாகக் கொண்ட கட்ட அணியாக அமையும்:
கட்ட மும்மூலைவிட்ட அணிகள்
கட்ட மும்மூலைவிட்ட அணி என்பது கட்ட அணிகளின் ஒரு சிறப்புவகையாகும். இவ்வணியில் கீழ்மூலைவிட்டம், முதன்மை மூலைவிட்டம், மேல்மூலைவிட்டம் ஆகிய மூன்றிலுமுள்ள உறுப்புகள் சதுர அணிகளாகவும் (கட்டங்கள்), ஏனைய உறுப்புகள் பூச்சிய அணிகளாகவும் இருக்கும். இது ஒரு மும்மூலைவிட்ட அணியைப் போன்றதேயாகும்; மும்மூலைவிட்ட அணியில் உள்ள எண்களுக்குப் பதிலாக இவ்வணியானது உள்ளணிகளைக் கொண்டிருக்கும்.
கட்ட மும்மூலைவிட்ட அணி A இன் அமைப்பு:
இதில் Ak, Bk, Ck ஆகியவை முறையே கீழ், முதன்மை மற்றும் மேல்மூலைவிட்டங்களில் அமையும் சதுர உள்ளணிகளாகும்.
கட்ட டோப்ளிட்சு அணிகள்
கட்ட டோப்ளிட்சு அணி (block Toeplitz matrix) என்பது கட்ட அணிகளின் மற்றொரு சிறப்புவகையாகும். டோப்ளிட்சு அணிகளில் அதன் உறுப்புகள் மூலைவிட்டங்களின் கீழ் மீள்வது போல, கட்ட டோப்ளிட்சு அணிகளில் அதன் மூலைவிட்டங்களின் கீழ் கட்டங்கள் மீளமைகின்றன. கட்ட டோப்ளிட்சு அணியின் ஒவ்வொரு பிரிப்பு உள்ளணியும் (Aij) டோப்ளிட்சு அணியாக இருக்க வேண்டும்.
கட்ட டோப்ளிட்சு அணியின் அமைப்பு:
நேரடிக் கூட்டல்
A (m × n), B (p × q) ஆகிய இரு அணிகளின் நேரடிக்கூட்டல் (direct sum), A B பின்வருமாறு வரையறுக்கப்படுகிறது:
எடுத்துக்காட்டாக,